
pg. 1 © Copyright 2020, Sertainty Corporation

Sertainty
Services

Guide

Draft 12

Version: V3.5.0

Copyright 2021, Sertainty Corporation

pg. 2 © Copyright 2020, Sertainty Corporation

Table of Contents

1. Overview ___ 6

 Delegate Service __ 6

 Event Service ___ 7

 Identity Service ___ 7

2. Design and Data Flow __ 8

 Delegate Design Summary ___ 10

 The process flow ___ 12

 Offline delegate resolution ___ 13

 How to Use a Delegate __ 13

 Working with existing private management services ______________________ 14

 Setting up a Service ___ 14

 Using MySQL as the Data Store _______________________________________ 15

 Getting Started with a Local Test Service _______________________________ 15

3. Web Server Communications ______________________________________ 17

 Web Server Request __ 17

 Web Server Response ___ 18

4. Deployment ___ 19

5. Web Functions ___ 21

 ds::authenticate ___ 23

 ds::closeSession__ 24

 dl::deleteDelegate__ 25

 dl::deleteDelegateAll ___ 25

 ds::deleteJournal ___ 26

 ds::deleteUser ___ 27

 ds::deleteUserId ___ 28

 event::count __ 29

 event::delete __ 30

 event::get ___ 31

 dl::getDelegate __ 33

 dl::getDelegates __ 34

 ds::getJournal ___ 35

 dl::getPublicDelegate ___ 37

 dl::getPublicDelegates___ 38

pg. 3 © Copyright 2020, Sertainty Corporation

 ds::getServer __ 39

 ds::getSystemFlags ___ 40

 dl::getSubscribers __ 40

 dl::getSubscription ___ 41

 dl::getSubscriptions ___ 43

 ds::getUser __ 44

 ds::getUserId __ 45

 ds::getUsers ___ 46

 ds::getUserIds ___ 47

 id::addConfigs ___ 48

 id::addUser ___ 49

 id::applyRules ___ 50

 id::deleteUser ___ 51

 id::getRuleParameter ___ 52

 id::getUser __ 53

 id::newDocument __ 54

 id::newUser ___ 55

 id::publish __ 56

 id::setRuleParameter ___ 58

 id::update __ 58

 id::updateUser ___ 60

 dl::newDelegate ___ 61

 ds::newUser ___ 63

 ds::newUserId ___ 64

 ds::openDatabase __ 65

 ds::openSession __ 66

 ds::publishUserId ___ 67

 dl::sendDelegateID ___ 68

 dl::sendDelegateIDToAddress_______________________________________ 69

 ds::setServer __ 69

 ds::setSystemFlags ___ 70

 dl::subscribe___ 71

 dl::unsubscribe __ 72

 dl::unsubscribeAll __ 73

 dl::updateDelegate ___ 74

 dl::updateSubscription __ 75

pg. 4 © Copyright 2020, Sertainty Corporation

 ds::updateUser __ 77

 ds::updateUserId ___ 78

 verifyDelegateID ___ 79

6. UXL Scripting Functions __ 81

 ds::authenticate ___ 83

 ds::closeDatabase __ 83

 ds::closeSession__ 84

 ds::deleteJournal ___ 84

 dl::deleteDelegate__ 85

 dl::deleteDelegateAll ___ 86

 ds::deleteUser ___ 86

 ds::dropDatabase __ 87

 ds::getChallenges __ 88

 ds::getJournal ___ 88

 ds::getAccessCode __ 90

 ds::getDatabaseParameters __ 90

 dl::getDelegate __ 91

 dl::getDelegates __ 92

 dl::getPublicDelegate ___ 92

 dl::getPublictDelegates __ 93

 ds::getServer __ 94

 ds::getSystemFlags ___ 94

 dl::getSubscribers __ 94

 dl::getSubscription ___ 96

 dl::getSubscriptions ___ 97

 ds::getUser __ 97

 ds::getUserId __ 98

 ds::getUsers ___ 99

 ds::getUserIds __ 100

 ds::initDatabase ___ 101

 dl::newDelegate __ 102

 ds::newUser __ 103

 ds::newUserId __ 104

 ds::openDatabase ___ 105

 ds::openSession ___ 105

 ds::publishUserId __ 106

pg. 5 © Copyright 2020, Sertainty Corporation

 dl::sendDelegateID __ 107

 dl::sendDelegateIDToAddress______________________________________ 107

 ds::setDatabaseParameters _______________________________________ 108

 ds::setResponses __ 109

 ds::setServer ___ 109

 ds::setAccessCode ___ 110

 ds::setSystemFlags __ 111

 dl::subscribe__ 111

 dl::unsubscribe ___ 112

 dl::unsubscribeAll ___ 113

 dl::updateDelegate __ 113

 dl::updateSubscription ___ 114

 ds::updateUser ___ 115

 ds::updateUserId __ 116

 dl::verifyDelegateID ___ 117

 event::countEvents __ 118

 event::deleteEvents ___ 119

 event::getEvents __ 120

7. Error Codes ___ 122

List of Tables

Table 1, Request Elements ... 17
Table 2, Response Elements .. 18
Table 3, Services Shared Web Functions ... 21
Table 4, Delegate Service Web Functions .. 22
Table 5, Event Service Web Functions ... 22
Table 6, Identity Service Web Functions ... 23
Table 7, Error Codes ... 122

List of Figures

Figure 1, High Level Sertainty Delegate Service Architecture 8

pg. 6 © Copyright 2020, Sertainty Corporation

1. Overview

The Sertainty Services is a collection of service extensions to the UXP technology object. The
Services share metadata and setup; however, each service extension can be utilized
independently. The following service extensions are supported:

• Data Service (ds::)

• Delegate Service (dl::)

• Event Service (event::)

• Identity Service (id::)

• UXP Service (sf::)

 Delegate Service

Delegate Service is a proprietary extension of Services providing remote user-access
management for UXP Objects. The Delegate Service provides a flexible Delegate Service
Management System as well as the statically built Delegate Identity Subscription list for UXP
Objects. A Delegate Identity permits external management of authorized Users for a UXP
Object.

So, at the time of its creation, a UXP Object may be bundled in different ways:

A static bundle builds into the UXP Object the Identity of the User authorized to access it.
The advantage of building a static UXP is its simplicity. A static UXP has no need for an
external delegate service to resolve the name of authorized users, and therefore it is self-
contained and self-reliant. The disadvantage of the static UXP is that the name of the
authorized users are built into it, and therefore if the list of authorized users changes, the
UXP needs to by unbundled, the list of users edited and then UXP has to be rebuilt. This is
not practical in a dynamic environment where there is significant churn in the users list.

An alternative is to use the concept of delegates within UXP. A delegate is a pseudo user
object that has, as its attribute, the address of a service that can resolve its user access
permissions. So a UXP designer can build a UXP with a delegate object and when this UXP is
accessed by a user, UXP uses the delegate object to access an external service that can
resolve the name of its constituent users. The advantage of this dynamic technique is that
the user list can be changed at any time without impacting or having to rebuild the UXP. The
disadvantage is that it requires an external service to resolve the constituent user list.

A UXP may have zero, one, or more built-in delegates. As a use case, consider a document
that needs to be shared by both the Engineering and Accounting departments with different
management structures. The document can be protected by building two delegates into
UXP; an Engineering delegate object and an Accounting delegate object. The two delegates
can potentially point to different services (one for each department) that can resolve user
permissions to access the UXP independently. The Accounting department manages its own
users and the Engineering department manages its own through their corresponding
services.

For a delegate-based UXP, the UXP must be accessed when the computer is on the grid and
can access the user authentication service. However, the designer of the UXP may also turn
on the caching option of the delegate, in which case the UXP will cache the latest user access
list and will use the cached list when offline. This option can be turned off (by UXP designer)
when only on-grid access is to be allowed.

The UXP can also be designed in the hybrid mode in which case the UXP may have both the

pg. 7 © Copyright 2020, Sertainty Corporation

built-in user list and one or more delegate objects. For example, when there is a fairly static
set of users that need to access a document (e.g. department heads) and then there is a
dynamic list of other users that may have a need to use the document, a hybrid UXP can be
built where the department head identifications are built into UXP statically and then one or
more delegates are used to manage the dynamic list of other potential users.

 Event Service

The Event Service provides a repository for UXP Object Events. The UXP Object can
optionally record Events at several locations, including a Services instance. When the Event
is received by the Services API, the Event is recorded and available for reporting by an
authorized agent of the Services.

The Event consists of a set of properties that describe the UXP Object operation, the status
of the operation and other environmental elements that permit extensive reporting on data
activities. Events can be recorded to a Services server only if there is a matching user
registered with the service. If an event is sent to a server having no matching user, the
event will be discarded.

 Identity Service

The Identity Service provides all the technology to construct an ID via the web without the need to
install sertainty libraries locally. Currently the Identity and associated artifacts are not stored in the
Services Database.

 The Services provides a base ID Def XML allowing the User to personalize the XML. The user is
editing / managing the XML on the local device. The User is responsible for maintaining and securing
the XML. The web-enabled Client, using the Services API, passes the XML to the Identity Service
within Data Seruvces. DS will add any additional attributes, can remove unnecessary attributes, can
validate XML and can publish the iic to a “buffer”; user must “save-as” to capture the *.iic

Assumption:

• Ability to create / access a UXP

• Ability to share

It utilizes the private Identity Definition XML to construct an *.iic file.

pg. 8 © Copyright 2020, Sertainty Corporation

2. Design and Data Flow

Services consists of:

• Server-side shared UXP SQLite Database managed within a UXP Object

o Services can be extended to utilize MySQL as the primary data store.

• Web service API

• Native C++ API

• Script extensions for local maintenance

The development interface also supports the concept of a local database that can be used
without a server. A server can be a default server as provided by Sertainty or a private
server. For a private server configuration, Services can be used to set up Sertainty-specific
functions.

As noted, the Services Database is a shared UXP SQLite Database. This shared Database is
utilized by Services extensions. The UXP SQLite Database has a private API that permits
direct access to SQLite artifacts within a conventional read-write UXP Object.

This Database manages the following logical entities:

Figure 1, High Level Sertainty Delegate Service Architecture

Services Server

The URL required for access to the Services Server must be known by the Server. When a
Delegate Identity is generated, it must contain the Services Server URL. This URL is required
by the UXP Object authentication process to locate the Delegate Service managed within
Services.

The Server URL is part of an auto-generated Delegate Identity. Therefore, the Server URL
must always match the URL within the Delegate Identity, or the User attempting access will
never be able to authenticate.

Users

pg. 9 © Copyright 2020, Sertainty Corporation

A User is a logical representation of a UXP Identity. The primary key is a username that
must also exist within the UXP Identity. When a Delegate Substitution occurs, the user’s
UXP ID is used to send to the requesting UXP object for authentication.

Attributes:

o Username – must exactly match a user in the user’s UXP IDs.

o Formal name – User-supplied name.

o Description – User-supplied description of user.

o Email address – Email address of user.

o Privileges – A bit-position encoded integer value which encapsulates user privileges.

o Application data – Optional application data that is passed back to the host when a
remote user is validate.

o UXP IDs used for delegate substitution, sessions, etc. A user can have many UXP IDs,
each serving a different purpose.

Delegate Identity

A Delegate Identity is a generic identity that can be embedded in an existing UXP. Every
Delegate Identity is owned by an existing User within the database and can be managed by
that user.

When a Delegate Identity is created or updated, a unique UXP ID is generated with the
necessary data to permit a UXP Object to contact the Services Database and validate
attempted access via the Delegate Identity.

Attributes:

o Owner name – User who owns the Delegate Identity.

o Delegate Identity name – each userUser-supplied name. Must be uniquely named
per User.

o Description – User-supplied description of the delegate.

o Generated UXP ID – Auto-generated UXP ID used to embed delegate in Workgroup
IDs.

o Private key – Auto-generated key used for protecting user validation messages.

o Checksum – Identity checksum of delegate ID.

o Expiration – Optional expiration time of the delegate.

o Permit offline access – If set to 1, enables offline access via a cached delegate
resolution.

o Offline duration – If “Permit offline access” is set to 1, this attribute sets the
maximum number of hours that offline access is permitted.

o Access maximum – Sets the maximum number of times a user may access the UXP.
A value of zero indicates no limit to the number of accessers.

Delegate Subscribers

A Delegate subscriber is a user who can utilize a delegate. The subscriber owner can
manage the list. A user must be a valid delegate service database user.

Attributes:

o Delegate owner – User owner of the delegate identity.

o Delegate name – Name of delegate identity.

o Username as subscriber – User who is subscribed to the delegate identity.

pg. 10 © Copyright 2020, Sertainty Corporation

o Expiration - Optional expiration date of delegate.

o Permit offline access – If set to 1, it enables offline access via a cached delegate
resolution.

o Offline duration – If offline is permitted, this attribute sets a maximum number of
hours that offline access is permitted.

o Access maximum – Sets the maximum number of times a user may access the UXP.
A value of zero indicates no limit to the number of accessers. This value overrides
the access maximum set at the delegate level.

o Access count – A running count of the number of times a user has successfully
accessed the UXP. If this value is equal to or greater than the access maximum, then
the remote authentication will be denied. If the access maximum is zero, then the
access count is purely informational.

Services Journal

A Date Services Journal is an event / audit record of all activities that utilizes the Services
Database. Users with JOURNAL privilege may access and maintain the Services Journal
entries.

Attributes:

o Date/Time of activity

o Status of activity (Success or Failure)

o Action keyword to group journal entries.

o Authorized Services Session User

o Username relevant to activity

o Delegate Identity owner if applicable

o Delegate Identity name if applicable

o Brief message describing activity

Services Session

To access and manage Services Database elements, a User must authenticate and start a
session using their UXP ID. The session will be authenticated the same way a User is
authenticated when opening a UXP or creating a single-sign-on session.

 Delegate Design Summary
A User must be registered with the Services in order to create Delegate Identity and to be a
Delegate Subscriber. When the Data Service Database is created, the initial User must be
provided in the form of a UXP ID. This User becomes the SYSADMIN for now. It is presumed
that there should only be one User per human or machine. A SYSADMIN User is the only
Services User who can create additional Users.

A User is a logical data item that can have one to many UXP IDs associated with it. a UXP ID
can be designated as:

• Private ID – personal UXP ID that can only be used by the user.

• Public ID – personal UXP ID that may be published in a white pages or similar
delegate.

• Session ID – personal UXP ID that is used to authorize a Services Management
session.

pg. 11 © Copyright 2020, Sertainty Corporation

• Delegate ID – personal UXP ID that is used to resolve an authentication attempt for a
UXP containing the delegate.

The above ID types are bit masks, so a UXP ID may be used for more than one purpose.

To manage their user account, create deletes, etc., a User must open a session with the
delegate service. The session is authenticated using the UXP ID that has the Session ID flag
set.

Notes: By rule, a UXP ID must have the same username as the delegate
service username.

A User can create a Delegate Identity. A Delegate Identity is a placeholder User that can be
embedded in UXP Objects as a User. When embedded, the Delegate Identity knows how to
contact the home Services in order to validate and resolve an authentication attempt. The
Delegate Identity cannot be used to authenticate access; it is only used as a path to the
Services. The Delegate Identity resolution is started when authentication is attempted for a
UXP Object. If the username is a locally embedded User in the UXP Object, then Services
connection is not needed. If the username was not found in the local UXP Object, the UXP
Engine will look for a Delegate Identity in the UXP. If a Delegate Identity is found, it will
contact the Delegate’s home Services, passing the username attempting access. Upon
receiving the message from a UXP Object, the Data Service will verify the Delegate Identity
that is requesting resolution. If valid, the Services will validate the username, which must be
a Delegate Subscriber to that Delegate Identity. A Delegate Subscriber is a direct link to a
registered User within the Services, so if a User has been removed or expired, the Delegate
Subscription is also invalidated.

If the user passes all tests on the delegate service, the service will deliver to the UXP the
actual UXP ID that was marked as a Delegate ID for the user. Once delivered to the UXP, the
UXP engine continues with authentication using the user’s UXP ID. It is assumed that the
user is the only one who can authenticate using the delivered UXP ID. If authentication is
successful, the user will be granted temporary access to the UXP contents inheriting rules
that were attached to the embedded delegate. Upon UXP closure, the UXP discards all
knowledge of the remote user. Future access attempts to the UXP by a user will follow the
same remote access procedure.

A delegate has base attributes that can control access, such as expiration and local
caching. The subscription has the same attributes that will override the delegate
settings. This gives the delegate owner the ability to control access for the entire delegate
subscriber list or at the subscriber level. Local caching is a feature that permits offline
access for a delegate subscriber. By rule, a delegate must be able to connect to its home
delegate service; however, in special cases where the user may need to be off the grid, the
delegate owner can specify whether a delegate may resolve using a locally cached data
structure. Locally cached data can be set with its own expiration so that a user cannot
exploit the delegate system indefinitely. In order to use the cached data, a user must
resolve via the delegate service at least once. This will activate local access for a specified
access window.

A delegate is owned and manage by its parent user. The delegate owner also manages the
subscriber list and its attributes. The subscriber list has no limit. Consider the subscriber list
to be similar to an email distribution list where recipients can be added, modified or revoked
without having to modify any UXP that utilizes the parent delegate.

Notes: Delegates are linked to a delegate service via a URL. If a URL for
the delegate physically changes, then UXP objects containing the
delegate will not be able to resolve delegate subscribers.

E-R (Entity-Relationship) rules:

• One registered delegate service user per human/machine as a guideline

pg. 12 © Copyright 2020, Sertainty Corporation

• A user may have many UXP IDs in the delegate service. At least one is required.

• A user’s username must be a username for any UXP IDs associated with the account.

• A user must have exactly one UXP ID that has the Delegate ID flag set.

• A user must have exactly one UXP ID that has the Session ID flag set.

• A user can have zero to many delegates. The user owns the delegates that he/she
creates.

• A delegate can have zero to many subscribers. A subscriber must be a registered
user in the delegate service.

As noted, the delegate service database is a UXP SQL database. UXP SQL has a private API
that permits direct access to SQL artifacts within a conventional read-write UXP.

 The process flow
Ordinarily, if a data owner wishes to create a UXP that can be shared with many users, the
native UXP requires all users to have identities within the UXP. For a large number of users,
or for a highly dynamic group of users, this is impractical.

To solve this problem, a delegate service is set up. The server consists of a UXP SQL
database and a listener service that supports a HTTP API. The database sets up the
following:

• A local delegate service database is initialized by way of the native API or the script
engine. A database cannot be created via the web interface.

• A user is created within the database for each owner and participant of a
UXP/delegate relationship. The user must provide a valid UXP ID at creation time.

• A delegate is created to establish the participants in a UXP. A delegate is owned by
a user within the database. When a delegate is created, it will create its own unique
identity.

• Subscriptions are set up by the delegate owner. A subscription is a list of users from
the database that can use the delegate for access into a UXP.

• A validation routine is provided that can validate an attempted UXP access. If the
remote user is permitted to access a UXP via the delegate, the validation routine will
return the user’s actual UXP ID to the calling UXP.

To use a delegate, a data owner must acquire the delegate identity. Typically, the owner will
create a workgroup ID that will contain the owner identity as well as the desired delegate
identity. Once the workgroup ID is created, it can be used to create a UXP that contains the
owner’s identity and the delegate identity.

When a user attempts to open and authenticate into the UXP, they will use their username.
If the UXP does not find the actual identity associated with the username, it will look for
delegate identities. If it finds one, it uses the delegate identity to contact the delegate
service that owns the delegate identity via the server validation API. If the delegate service
recognizes the delegate identity, it determines if the requested user is actually a member of
the delegate server and has been subscribed to the delegate. If so, the user’s actually UXP
ID is passed back to the UXP and authentication resumes as if the user has an identity within
the UXP. If UXP is offline, the server validation API will use a cached copy to determine if the
user is subscribed to the delegate, assuming offline access is permitted as described below.

Notes: the username lookup is case insensitive.

pg. 13 © Copyright 2020, Sertainty Corporation

 Offline delegate resolution
A delegate subscription has an option to permit offline validation. This will allow a user to
validate remotely, then subsequently validate using a local cached copy of the delegate
message. An offline option can be and should be limited by a duration attribute that will
automatically disable offline resolution based on an expiration date/time. The duration
attribute is specified in hours. For example, a subscriber may be granted access to a UXP for
24 hours, but the subscriber MUST first open the UXP via remote validation when online to
acquire the cached copy of the delegate. At that time, the expiration is calculated and hard-
wired into the cached delegate for that subscriber. This process occurs every time a
successful remote validation occurs. If a subscriber does not reconnect to the delegate
service by the time the cached delegate expires, access to the UXP will be denied.

Offline settings can be set at both the delegate level and the subscription level. In both
cases, the flag permit_offline must be set to 1 to enable offline access. Also, at both
delegate and subscription levels, a second attribute, offline_duration, is used to limit
the offline subscription to a specified number of hours.

The delegate rules for offline access are as follows:

• Permit_offline can be zero or one. A one enables offline access for all

subscriptions. A negative value will translate to a zero value.

• Offline_duration can be zero or a positive value. A zero indicates no
expiration. A non-zero value represents the number of hours that offline access is
permitted. The offline expiration is automatically calculated when the cached
delegate is created at the user endpoint.

• Access_max is the maximum number of successful UXP authentications for the
current user. Once the access count reaches the maximum value, access via
Delegate Services will be denied.

For a subscription, the same rules apply to permit_offline and offline_duration

with the following additions:

• permit_offline can be -1, which indicates that the value should be retrieved

from the delegate.

• offline_duration can be -1, which indicates the value should be retrieved
from the delegate.

• Access_max can be -1, which indicates the value should be retrieved from the
delegate.

In all cases, the values specified for the subscription will override the values set at the
delegate level. This implies that if a delegate does not permit offline access (default
behavior), an exception can be established for an individual user using subscription
permit_offline value.

 How to Use a Delegate
To use a delegate, both the owner of the delegate and potential subscribers must be
registered users within the delegate service. Additionally, the users must have uploaded a
valid UXP ID to the server under their respective accounts.

A delegate at the identity server consists of various attributes that are maintained by the
owner of the delegate. As noted, the owner is a valid user at the delegate service. The
delegate also contains a unique auto-generated ID that will be used by a subscriber. The ID
can be by a subscriber via the API or it can be delivered to the user via the registered email

pg. 14 © Copyright 2020, Sertainty Corporation

address of the subscriber. The delegate owner has full control over the delegate settings as
well as the subscription settings for a user.

Once a delegate ID has been defined and a subscriber list has been built, a user can do the
following:

1. Use the delegate ID to create UXP objects. Though feasible, it may give full control
to a delegate subscriber, so care should be taken.

2. A more common approach is to create a workgroup with a personal ID and the
delegate ID as a participant. This maintains your control as the owner of the data,
yet allows the UXP to have dynamic access via the delegate subscriber list.

As the owner of the delegate, a user can build a very powerful access plan to data without
requiring local copies of user identities within the UXP. For example, one has a design
document that must be accessed by a team. Without a delegate, the team must be present
as a potentially large workgroup so that the UXP can be accessed by team members. And, if
the team changes, the data owner must redistribute a new UXP containing updated team
membership. In a dynamic environment, this is impractical without the use of delegates.

With a delegate, the document owner can create a delegate containing the team members
as subscribers. Then a workgroup would only consist of the data owner and the delegate
identity. When the UXP is created, the team members in the delegate can access the data
just as if the user identity is embedded in the UXP. If the team changes, the delegate owner
only has to modify the subscriber list to add, update or remove subscriptions.

 Working with existing private management services
By default, user management is performed by a Sertainty delegate management object
against the required delegate service database. The database maintains the registered
users, the delegate identities and the delegate subscriptions. It also maintains a journal of
activity.

If the current environment has its own delegate services, a simple callback can be specified
to link Sertainty Delegate Services when a user validation operation occurs. Sertainty will
call the private delegate services first. If it passes, it will verify the Sertainty user.

To maintain a required level of security, a private database must be maintained. To keep a
local delegate services in synch with the Sertainty Delegate Services, a simple user
management API is defined in the C++ header file uxpdelegateservice.h.

 Setting up a Service
If the current implementation already has a server and delegate service subsystem, the
steps to use the Sertainty delegate service is as follows:

1. Define and implement a callback function to link any private user-management
dependencies. The callback prototype is defined as a C-language function.

2. Create a variable of type uxp::dataServices. The variable can be used to
initialize a new database, open an existing database and perform other
management functions.

Prior to creating any delegates, the server name must be set using the
uxp::dataServices::setServer call. This call saves the URL that will be called
when a UXP object attempts to validate a remote user.

Notes: If the server URL changes after delegates have been defined, they
must be recreated, or remote authentication will fail.

pg. 15 © Copyright 2020, Sertainty Corporation

Once a URL has been established, there needs to be an HTTP listener for the URL. For a
custom service, any messages from a UXP will be encoded and unreadable by the service.
For those messages, pass the message delegate to the
uxp::dataServices:executeWebFunction. It will process the message, perform
the requested action and construct a response. Like the original request, the response
buffer is encoded so that only the calling UXP can decode it. The new message should be
returned as a response to the original request.

For hosts that use the Sertainty Delegate Service, a supplied HTTP listener can be set up to
process incoming requests via the URL.

 Using MySQL as the Data Store
By default, the Services system creates a local UXP SQL database. The local database stores both

service administration information as well as data to support users and delegates. This configuration

will work without issues for small delegate installations. If, however, the user community can grow

into a large collection, perhaps thousands or even millions, Sertainty recommends defining an external

MySQL database that will work in concert with the UXP SQL administrative database.

The MySQL database will store all user and delegate data, thus, permitting managed growth of your

installation.

To use the MySQL option, an installation must do the following:

• Install MySql locally, preferably MySQL 8 or later. Note the host name and port number used

to access the database.

• Create the schema uxpds with a strong password of your choice. The Services server will

automatically create the necessary tables and indexes with this schema.

• Create a user uxpds with full privileges to manage the uxpds schema. Services requires this

user when storing and accessing necessary elements. Note, this user does not require access

to any elements outside the schema uxpds.

When initializing the Services server environment, the MySql host name, port number and passsword

for user uxpds must be provided. The information is then stored in the UXP SQL database and will be

used when the server is started. The uxpds password can be changed via the Services database

parameters API.

To properly work, the MySQL installation must be located by the Sertainty system. The following

MySQL client libraries are required by the Sertainty system:

• Linux

libmysqlclient.so

Example installation: /usr/lib64/mysql/libmysqlclient.so

• MacOS

libmysqlclient.dylib

Example installation: /usr/local/mysql/lib/libmysqlclient.dylib

• Windows

libmysql.dll

Example installation: C:\Program Files\MySQL\MySQL Server 8.0\lib\libmysql

 Getting Started with a Local Test Service
Until a remote listener service is established, one can try out delegates with a local delegate
service. The UXP engine supports both a remote and a local URL for service

pg. 16 © Copyright 2020, Sertainty Corporation

communications. To use a local service, the server URL must be file://local. When a
delegate is linked to this URL, the UXP engine will talk directly to the delegate service
without using a network protocol.

In the examples folder, a UXL script will create a sample local delegate service, create two
sample users and set up a sample delegate. To test this, follow these steps:

• Run the script engine command line utility

• At the prompt, execute file::cd(“your-installed-examples-
folder”); in which you must provide the path to your copy of the examples
folder.

• @sample_delegate.uxl

o This will create the delegate database, and two users. To finish the process,
you will be prompted to enter the credentials for the second user:
SampleUser2@myemail.com.

o Next, the script will create a delegate and subscribe user
SampleUser2@myemail.com to the new delegate.

o Finally, the new delegate will be published as the file delegate.iic in
the current folder.

• Exit from the script utility

• Run the Sertainty Assistant

o If you have an ID library, open it; otherwise, create new ID library.

o Once open, create a new ID.

o Drag your personal user to the new ID as a member.

o Go to the external examples folder and find the file delegate.iic. Drag
that file onto the Assistant over the newly created ID. This will display a
window describing the delegate ID from the file. Press OK and the delegate
user from the IIC will be placed into your new ID in the library.

o Now, you have an ID that contains two users: you and a delegate. A
delegate user is just a placeholder and cannot be used to directly log into a
UXP.

o Right-mouse click and create a UXP from the ID. This will display a dialog for
creating a UXP. Fill in the necessary information such as file name. Add an
external file to the new UXP and hit the Create button. This will create a
UXP on disk and may open the UXP within the Assistant. Go ahead and close
the new UXP.

o Open the new UXP. At the username prompt, you can center your personal
user name or you can invoke the delegate system by entering
SampleUser2@myemail.com. Since SampleUser2@myemail.com
is not embedded in the UXP, the engine will attempt resolve the username
via the delegate service that was created by the script. If found, it will
starting prompting you as if SampleUser2@mymemail.com is a local
user within the UXP.

• The sample UXL script will recreate the delegate service database every time it runs.
This also invalidate the delegate that was embedded in the test UXP object. The
existing delegate database can be used, but one will have to write custom UXL
scripts to add or modify the existing database.

file://///local
mailto:SampleUser2@myemail.com
mailto:SampleUser2@myemail.com
mailto:SampleUser2@myemail.com
mailto:SampleUser2@myemail.com
mailto:SampleUser2@mymemail.com

pg. 17 © Copyright 2020, Sertainty Corporation

3. Web Server Communications

Web server communication is performed through an xml Request and Response messages.

Most communications to and from the Services server must be protected. The server is set
up to handle clear messages, Sertainty-protected messages and user-protected messages.
User-protected messages must have a user-defined access code as defined by the call
setAccessCode within the server. Typically, the server administrator would set up the code.

Once a user code is defined, an endpoint that wishes to communicate with the server must
encode the web request using the access code. All responses back from the server will be
encoded using the same code as the original request.

 Web Server Request

Table 1, Request Elements

Element Requirement Description

<Request> Required The outer most XML tag for the request
document.

<Session> Required Specifies the required session identifier
as assign at API authentication time.

<Function> Required Name of the requested function. A
function name consists of its service
namespace followed :: and the base
function name.

Ex: dl::newDelegate(...)

<ArgList> Required for
arguments

Indicates a list of one or more arguments
are to be passed to the function. If no
arguments are required by the function,
then tag is optional.

<Argument

name=”item-n”>

Required for
arguments

An argument to be passed to the
function. The attribute name is used to
identify an argument and may be
optional.

<Request>

 <Session>session-id</Session>

 <Function>function-name</Function>

 <ArgList>

 <Argument name=”item-1”>value</Argument>

 <Argument name=”item-2”>value</Argument>

 <Argument name=”item-n”>value</Argument>

 …

 </ArgList>

</Request>

pg. 18 © Copyright 2020, Sertainty Corporation

 Web Server Response
The format of a response is:

Table 2, Response Elements

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”item-1”>value</Result>

 <Result name=”item-2”>value</Result>

 <Result name=”item-n”>value</Result>

 …

 </ResultList>

</Response>

Element Requirement Description

<Response> Required The outer most XML tag for the
response document.

<Status> Required Status code indicating the result of
the function call.

<StatusMessage> Required Static message that is associated
with the <Status> element.

<ResultList> Required for
result data

Indicates a list of one or more
elements have been returned from
the function. If no elements are
returned by the function, then tag is
optional.

<Result name=”item-n”> Required for
result data

A return data element from the
function. The data must be in
Base64 format.

The attribute name is used to
identify the result item and may be
optional.

pg. 19 © Copyright 2020, Sertainty Corporation

4. Deployment

The Services technology is based on UXP technology; therefore, the Sertainty Core
system must be installed.

Once Data Sesrvices is installed, the installation folder contains the following
developer folders:

• developer/bin

Contains the necessary files for the Services technology.

Linux Libraries

libSertaintyDataServices.so (Shared library)

dsplugins (Folder)

MacOSX Libraries

libSertaintyDataServices.dylib (Shared library)

dsplugins (Folder)

Windows Libraries

SertaintyDataServices1.dll (Shared library)

dsplugins (Folder)

Note: All Sertainty Object libraries are built on MacOSX and Linux using
cdecl function declarations. For Windows, libraries are built using stdcall. A
caller must adhere to correct call standard or incorrect behavior may occur.

All libraries are 64 bit and are compatible with standard compilers.

• developer/documents

• Sertainty Services Guide

The Guide comes in two formats: PDF and HTML. It contains a full
description of the Services, include delegate services.

• Services Public API

The API guide is a reference guide for the public service functions.
Like the Developer Guide, it comes in multiple formats.

The following languages interfaces are supported:

o C language

o C++ language that requires the standard C++ environment.

• developer/examples

Contains sample scripts and code.

Module Description

sample_delegate.c Demonstrates UXP authentication via
Sertainty Delegate Services using C.

sample_delegate.cpp Demonstrates UXP authentication via
Sertainty Delegate Services using C++.

pg. 20 © Copyright 2020, Sertainty Corporation

sample_delegate.uxl Demonstrates UXP authentication via
Sertainty Delegate Services using UXL
scripting.

pg. 21 © Copyright 2020, Sertainty Corporation

5. Web Functions

A data service is defined as a manager of authorized members of a delegate name list. A
delegate name is a user that can be defined in a UXP and used to dynamically authenticate a
user that does not have embedded credentials within the same UXP. Instead, the UXP will
contact the designated delegate service server and attempt to locate the user within the
delegate name user list. If found, the user’s identity is sent back to the UXP and will be used
to authenticate a user for access to the UXP contents.

There will only be one API function that can communicate with a server; however, the single
API is overloaded to perform unlimited logical functions. Response values are also
overloaded.

A request and its corresponding response are in XML format.

Table 3, Services Shared Web Functions

Function Description

ds::authenticate Authenticates a Services maintenance session.

ds::closeSession Closes a Services maintenance session.

ds::deleteJournal Deletes old rows from the journal of activities.

ds::deleteUser Deletes a delegate user.

ds::deleteUserId Deletes a UXP ID for a user.

ds::getJournal Gets the current journal of activities.

ds::getServer Gets the current server URL.

ds::getUser Gets delegate user properties.

ds::getUserId Gets a UXP ID for a user.

ds::getUserIds Gets a list of UXP IDs for a user.

ds::getUsers Gets a list of users.

ds::newUser Adds a delegate user.

ds::newUserId Adds a UXP ID to an existing delegate user.

ds::openDatabase Opens the server database.

ds::openSession Opens a new Services maintenance session.

ds::publishUserId Publishes a UXP ID for a user.

ds::setServer Sets the server URL.

ds::updateUser Updates a delegate user.

ds::updateUserId Updates a UXP ID for a delegate user.

pg. 22 © Copyright 2020, Sertainty Corporation

Table 4, Delegate Service Web Functions

Function Description

dl::deleteDelegate Deletes an existing delegate name.

dl::deleteDelegateAll Deletes all delegates by user.

dl::getDelegate Gets the requested delegate.

dl::getDelegates Gets a list of available delegate names
for the specified user.

dl::getPublicDelegate Gets the requested public delegate.

dl::getPublicDelegates Gets a list of available public delegate
names for the specified user.

dl::getSubscribers Gets a delegate user list.

dl::getSubscription Gets subscription properties.

dl::getSubscriptions Gets a list of delegates to which the user
has subscribed.

dl::newDelegate Adds a new delegate name.

dl::sendDelegateID Sends a delegate ID to a registered user.

dl::sendDelegateIDToAddress Sends a delegate ID to an email address.

dl::subscribe Adds a user to a delegate user list.

dl::unsubscribe Removes a user from a delegate user list.

dl::unsubscribeAll Removes a user from all delegate lists.

dl::updateDelegate Updates an existing delegate.

dl::updateSubscription Updates member subscription attributes.

dl::verifyDelegateID Verifies a delegate ID with the Sertainty
delegate service.

Table 5, Event Service Web Functions

Function Description

event::count Returns number of event records.

event::delete Deletes event records.

pg. 23 © Copyright 2020, Sertainty Corporation

event::get Gets requested event records.

Table 6, Identity Service Web Functions

Function Description

id::addConfigs Adds a configuration to an ID definition.

id::addUser Adds a user existing IIC to the ID definition.

id::applyRules Applies a rule preset to the ID definition.

id::deleteUser Deletes a user from an ID definition.

id::getUser Gets the user definition from an ID definition.

id::newDocument Creates a new ID definition document.

id::newUser Creates a new user in an ID definition.

id::publish Publishes an ID definition to an IIC.

id::update Updates the ID definition properties.

id::updateUser Updates a user in an ID definition.

 ds::authenticate

Authenticates an open session to the Services maintenance service.

Format:

Function Arguments:

challenge-n Required Challenge string as retrieved by

a prior authenticate call.

response-n Required Response value for the

<Request>

 <Session>session-id</Session>

 <Function>ds::authenticate</Function>

 <ArgList>

 <Argument name=“challenge-1”>response-1</Argument>

 <Argument name=“challenge-2”>response-2</Argument>

 <Argument name=”challenge-n”>response-n</Argument>

 </ArgList>

</Request>

pg. 24 © Copyright 2020, Sertainty Corporation

corresponding challenge string.

Returns:

Return Arguments:

status
Status of authentication attempt. Possible values:

StatusAuthorized: Session is ready to be
used for scatter
operations.

StatusCanceled: Authentication attempt
has been canceled.

StatusChallenged: User must respond to
challenges. Challenges
will be included with this
result.

StatusNotAuthorized: Authentication failed.

challenge-n Challenge string to be presented to the user. The
number of challenges depends on the level of trust
established by the delegate service.

 ds::closeSession

Closes an existing session to the Services maintenance service.

Format:

Function Arguments:

None

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”status”>value</Result>

 <Result name=”challenge-1”>value</Result>

 <Result name=”challenge-2”>value</Result>

 <Result name=”challenge-n”>value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::closeSession</Function>

</Request>

pg. 25 © Copyright 2020, Sertainty Corporation

Returns:

 dl::deleteDelegate

Deletes a delegate name.

Format:

Function Arguments:

owner Required Owner name for the delegate.

name Required Name of the delegate to delete.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 dl::deleteDelegateAll

Deletes all delegates for a user.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>dl::deleteDelegate</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 26 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name for the delegates.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 ds::deleteJournal

Deletes old rows from the current activity journal. Requires Journal role to perform this
operation.

Format:

Function Arguments:

<Request>

 <Session>session-id</Session>

 <Function>dl::deleteDelegateAll</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::deleteJournal</Function>

 <ArgList>

 <Argument name=“auth_username”>value</Argument>

 <Argument name=“username”>value</Argument>

 <Argument name=“delegateowner”>value</Argument>

 <Argument name=“delegatename”>value</Argument>

 <Argument name=“startdate”>value</Argument>

 <Argument name=“enddate”>value</Argument>

 </ArgList>

</Request>

pg. 27 © Copyright 2020, Sertainty Corporation

auth_username Optional Specifies the authorized user who

performed the activity.

username Optional Specifies the user associated with the
activity.

delegateowner Optional Specifies the delegate owner name. If
not specified, all delegate owners will
be included.

delegatename Optional Specifies the delegate name. If not
specified, all delegate names will be
included.

startdate Optional Start date/time prior to which all rows
will be purged from the journal. If not
specified, the beginning of the journal
is used.

Date format is ISO.

enddate Optional End date/time prior to which all rows
will be purged from the journal. If not
specified, the current date/time is used.

Date format is ISO.

Returns:

Notes: This operation requires JOURNAL privileges for the current user.

 ds::deleteUser

Deletes a user from the delegate service. Current session must have UserAdmin role
privilege to delete a user.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::deleteUser/Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

pg. 28 © Copyright 2020, Sertainty Corporation

Function Arguments:

username Required Name of the user to delete.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user.

 ds::deleteUserId

Deletes a UXP ID for a user. Current session must have UserAdmin role privilege to delete
an ID.

Format:

Function Arguments:

username Required Name of the ID owner.

idname Required Name of the UXP ID to delete.

Returns:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::deleteUserId/Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 29 © Copyright 2020, Sertainty Corporation

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
ID owner is not the same as the current user.

 event::count

Gets number of event records. Requires READEVENTS role to perform this operation.

Format:

Function Arguments:

action Optional Specifies the action text for the

event. The filter is applied as an
equality and is combined with
other filter options using the SQL
AND operator.

uxp_name Optional Specifies the UXP name. The filter
is applied as an equality and is
combined with other filter options
using the SQL AND operator.

uxp_file Optional Specifies the UXP file specification.
The filter is applied as an equality
and is combined with other filter
options using the SQL AND
operator.

event_date_low Optional Specifies the earliest date/time for
the event. The filter is applied as a
range and is combined with other
filter options using the SQL AND
operator.

event_date_high Optional Specifies the latest date/time for
the event. The filter is applied as a
range and is combined with other
filter options using the SQL AND

<Request>

 <Session>session-id</Session>

 <Function>event::</Function>

 <ArgList>

 <Argument name=“action”>value</Argument>

 <Argument name=“uxp_name”>value</Argument>

 <Argument name=“uxp_file”>value</Argument>

 <Argument name=“event_date_low”>value</Argument>

 <Argument name=“event_date_high”>value</Argument>

 </ArgList>

</Request>

pg. 30 © Copyright 2020, Sertainty Corporation

operator.

Returns:

Return Arguments:

count The number of event records that matched the optional
filter criteria.

Notes: This operation requires READEVENTS privileges.

 event::delete

Deletes event records. Requires MANAGEEVENTS role to perform this operation.

Format:

Function Arguments:

action Optional Specifies the action text for the

event. The filter is applied as an
equality and is combined with
other filter options using the SQL
AND operator.

uxp_name Optional Specifies the UXP name. The filter
is applied as an equality and is

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”count”>value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>event::delete</Function>

 <ArgList>

 <Argument name=“action”>value</Argument>

 <Argument name=“uxp_name”>value</Argument>

 <Argument name=“uxp_file”>value</Argument>

 <Argument name=“event_date_low”>value</Argument>

 <Argument name=“event_date_high”>value</Argument>

 </ArgList>

</Request>

pg. 31 © Copyright 2020, Sertainty Corporation

combined with other filter options
using the SQL AND operator.

uxp_file Optional Specifies the UXP file specification.
The filter is applied as an equality
and is combined with other filter
options using the SQL AND
operator.

event_date_low Optional Specifies the earliest date/time for
the event. The filter is applied as a
range and is combined with other
filter options using the SQL AND
operator.

The format of the date is ISO.

event_date_high Optional Specifies the latest date/time for
the event. The filter is applied as a
range and is combined with other
filter options using the SQL AND
operator.

The format of the date is ISO.

Returns:

Return Arguments:

None

Notes: This operation requires MANAGEEVENTS privileges.

 event::get

Gets event records. Requires READEVENTS role to perform this operation.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”count”>value</Result>

 </ResultList>

</Response>

pg. 32 © Copyright 2020, Sertainty Corporation

Function Arguments:

action Optional Specifies the action text for the

event. The filter is applied as an
equality and is combined with
other filter options using the SQL
AND operator.

Uxp_name Optional Specifies the UXP name. The filter
is applied as an equality and is
combined with other filter options
using the SQL AND operator.

Uxp_file Optional Specifies the UXP file specification.
The filter is applied as an equality
and is combined with other filter
options using the SQL AND
operator.

Event_date_low Optional Specifies the earliest date/time for
the event. The filter is applied as a
range and is combined with other
filter options using the SQL AND
operator.

Event_date_high Optional Specifies the latest date/time for
the event. The filter is applied as a
range and is combined with other
filter options using the SQL AND
operator.

start_row Optional Specifies the starting logical row
number to return after filters have
been applied.

count Optional Specifies the number of rows to
return after filters and start_row
have been applied.

Returns:

<Request>

 <Session>session-id</Session>

 <Function>event::count</Function>

 <ArgList>

 <Argument name=“action”>value</Argument>

 <Argument name=“uxp_name”>value</Argument>

 <Argument name=“uxp_file”>value</Argument>

 <Argument name=“event_date_low”>value</Argument>

 <Argument name=“event_date_high”>value</Argument>

 <Argument name=“start_row”>value</Argument>

 <Argument name=“count”>value</Argument>

 </ArgList>

</Request>

pg. 33 © Copyright 2020, Sertainty Corporation

Return Arguments:

Row-n The event record in XML format. The document is

encoded in base64.

Notes: This operation requires READEVENTS privileges.

 dl::getDelegate

Gets the requested delegate name.

Format:

Function Arguments:

owner Required Owner name for the delegate.

name Required Name of the delegate.

Returns:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”Row-n”>value</Result>

 <Result name=”Row-n”>value</Result>

 <Result name=”Row-n”>value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>dl::getDelegate</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 </ArgList>

</Request>

pg. 34 © Copyright 2020, Sertainty Corporation

Return Arguments:

owner Owner name for the new delegate.

Name Name of the new delegate.

Description Description of the delegate.

Expiration Date at which subscription expires. A zero indicates
no expiration. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A 1 value will permit offline access to the UXP
object. Otherwise, the delegate must be resolved
by contacting the delegate service.

Offline_duration For offline access, specifies the number of hours
that offline access will be permitted. The expiration
of offline access is calculated based on the last time
online access was obtained.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit.

flags Flags to control delegate visibility and behavior.
Possible values:

 1 – Delegate can be fetched by anonymous user

checksum UXP ID checksum.

uxpid UXP ID used as a delegate participant in a UXP.
Buffer will be encoded in base64.

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 dl::getDelegates

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”owner”>value</Result>

 <Result name=name”>value</Result>

 <Result name=description”>value</Result>

 <Result name=expiration”>value</Result>

 <Result name=permit_offline”>value</Result>

 <Result name=offline_duration”>value</Result>

 <Result name=access_max”>value</Result>

 <Result name=flags”>value</Result>

 <Result name=checksum”>value</Result>

 <Result name=uxpid”>value</Result>

 </ResultList>

</Response>

pg. 35 © Copyright 2020, Sertainty Corporation

Gets a list of available delegate names for the specified user.

Format:

Function Arguments:

owner Required Specifies the owner of available delegates.

Returns:

Return Arguments:

name-n Name of the delegate.

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 ds::getJournal

Gets the current activity journal. Requires Journal role to perform this operation.

Format:

<Request>

 <Session>session-id</Session>

 <Function>dl::getDelegates</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”name-1”>value</Result>

 <Result name=”name-2”>value</Result>

 <Result name=”name-n”>value</Result>

 </ResultList>

</Response>

pg. 36 © Copyright 2020, Sertainty Corporation

Function Arguments:

action Optional Specifies the action code for the

activity.

auth_username Optional Specifies the authorized user who
performed the activity.

username Optional Specifies the user associated with
the activity.

delegateowner Optional Specifies the delegate owner name.
If not specified, all delegate owners
will be included.

delegatename Optional Specifies the delegate name. If not
specified, all delegate names will be
included.

startdate Optional Specifies the start date/time to filter
the journal records. If not specified,
the results start at the beginning of
the journal.

Date format is ISO.

enddate Optional Specifies the end date/time to filter
the journal records. If not specified,
the current date/time is used.

Date format is ISO.

startrow Optional Specifies the row number to start
relative to the result set. For
example, if the search finds 100
rows, then by specified row 10, the
result set will start returning rows at
row 10 instead of row 1.

maxrows Optional Specifies the maximum rows to
return from adjusted result set. If

<Request>

 <Session>session-id</Session>

 <Function>ds::getJournal</Function>

 <ArgList>

 <Argument name=“action”>value</Argument>

 <Argument name=“auth_username”>value</Argument>

 <Argument name=“username”>value</Argument>

 <Argument name=“delegateowner”>value</Argument>

 <Argument name=“delegatename”>value</Argument>

 <Argument name=“startdate”>value</Argument>

 <Argument name=“enddate”>value</Argument>

 <Argument name=“startrow”>value</Argument>

 <Argument name=“maxrows”>value</Argument>

 </ArgList>

</Request>

pg. 37 © Copyright 2020, Sertainty Corporation

not specified, all rows will be
returned.

Returns:

Return Arguments:

row-n Set of columns separated by the ‘|’ character that
represents a journal entry. Columns are:

• Date/time of entry in ISO format

• Status of operation (0 – success, 1 – error)

• Authorized username who performed the activity.

• Username associated with the operation (if
applicable)

• Delegate-Owner (if applicable)

• Delegate-Name (if applicable)

• Action code for the activity

• Message associated with the activity

Notes: This operation requires JOURNAL privileges.

 dl::getPublicDelegate

Gets the requested public delegate name.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”row-1”>value</Result>

 <Result name=”row-2”>value</Result>

 <Result name=”row-n”>value</Result>

 </ResultList>

</Response>

<Request>

 <Function>dl::getDelegate</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 </ArgList>

</Request>

pg. 38 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name for the delegate.

name Required Name of the delegate.

Returns:

Return Arguments:

owner Owner name for the new delegate.

Name Name of the new delegate.

Description Description of the delegate.

checksum UXP ID checksum.

uxpid UXP ID used as a delegate participant in a UXP.
Buffer will be encoded in base64.

 dl::getPublicDelegates

Gets a list of available public delegate names for the specified user.

Format:

Function Arguments:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”owner”>value</Result>

 <Result name=name”>value</Result>

 <Result name=description”>value</Result>

 <Result name=checksum”>value</Result>

 <Result name=uxpid”>value</Result>

 </ResultList>

</Response>

<Request>

 <Function>dl::getDelegates</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 </ArgList>

</Request>

pg. 39 © Copyright 2020, Sertainty Corporation

owner Required Specifies the owner of available delegates.

Returns:

Return Arguments:

name-n Name of the delegate.

 ds::getServer

Gets the server URL. The server URL must be set in order to create delegates.

Format:

Function Arguments:

None

Returns:

Return Arguments:

server-url URL setting for the current server.

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”name-1”>value</Result>

 <Result name=”name-2”>value</Result>

 <Result name=”name-n”>value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::getServer</Function>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”server-url”>value</Result>

 </ResultList>

</Response>

pg. 40 © Copyright 2020, Sertainty Corporation

 ds::getSystemFlags

Gets the server system flags. System flags modify server behavior.

Format:

Function Arguments:

None

Returns:

Return Arguments:

flags

System flags setting for the current server. Value is a
bitmask with the following supported values:

1 – Record all data updates in the journal.

2 – Record delegate lookup in the journal.

4 – Record session authentication in the journal.

 dl::getSubscribers

Gets a delegate user list.

Format:

<Request>

 <Session>session-id</Session>

 <Function>ds::getSystemFlags</Function>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”flags”>value</Result>

 </ResultList>

</Response>

pg. 41 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name of the delegate.

Name Required Name of the delegate.

Username
Optional Subscriber username filter. SQL LIKE

operator is supported.

Startrow
Optional Specifies a start row for the matching

subscriber list.

Maxrows
Optional Specifies the maximum number of rows to

fetch from the matching subscriber list.

Returns:

Return Arguments:

username-n Name of a user.

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 dl::getSubscription
Gets the subscription attributes. Current session must be the requested user or have
UserAdmin role privilege to get user information.

<Request>

 <Session>session-id</Session>

 <Function>dl::getSubscribers</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“username”>value</Argument>

 <Argument name=“startrow”>value</Argument>

 <Argument name=“maxrows”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”username-1”>value</Result>

 <Result name=”username-2”>value</Result>

 <Result name=”username-n”>value</Result>

 </ResultList>

</Response>

pg. 42 © Copyright 2020, Sertainty Corporation

Format:

Function Arguments:

owner Required Owner name for the delegate.

Name Required Name of the delegate.

Member Required Name of the user who is subscribed.

Returns:

Return Arguments:

owner Owner name for the delegate.

Name Name of the delegate.

Member Username of the subscriber.

Expiration Date at which subscription expires. A zero indicates
no expiration. A -1 indicates use the value from the
delegate. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A 1 value will permit offline access to the UXP object.
Otherwise, the delegate must be resolved by
contacting the delegate service. A -1 indicates use

<Request>

 <Session>session-id</Session>

 <Function>dl::getSubscription</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“member”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=“owner”>value</Result>

 <Result name=”name”>value</Result>

 <Result name=”member”>value</Result>

 <Result name=”expiration”>value</Result>

 <Result name=”permit_offline”>value</Result>

 <Result name=”offline_duration”>value</Result>

 <Result name=”access_max”>value</Result>

 <Result name=”access_count”>value</Result>

 </ResultList>

</Response>

pg. 43 © Copyright 2020, Sertainty Corporation

the value from the delegate.

Offline_duration For offline access, specifies the number of hours that
offline access will be permitted. The expiration of
offline access is calculated based on the last time
online access was obtained. A -1 indicates use the
value from the delegate.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit. A value
of -1 indicates use the value from the delegate.

Access_count Current successful access count.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 dl::getSubscriptions

Gets a list of delegates to which the user has subscribed.

Format:

Function Arguments:

username Required Specifies the user to list.

Returns:

Return Arguments:

<Request>

 <Session>session-id</Session>

 <Function>dl::getSubscriptions</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”row-1”>value</Result>

 <Result name=”row-2”>value</Result>

 <Result name=”row-n”>value</Result>

 </ResultList>

</Response>

pg. 44 © Copyright 2020, Sertainty Corporation

row-n Set of columns separated by the ‘|’ character that
represents a delegate. Columns are:

• Delegate owner name

• Delegate name

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::getUser

Fetches a user from the delegate service. Current session must be the requested user or
have UserAdmin role privilege to get user information.

Format:

Function Arguments:

username Required Name of the user to get.

Returns:

Return Arguments:

username Username of the user.

<Request>

 <Session>session-id</Session>

 <Function>ds::getUser</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”username”>value</Result>

 <Result name=”formalname“>value</Result>

 <Result name=”description“>value</Result>

 <Result name=”email“>value</Result>

 <Result name=”privileges“>value</Result>

 <Result name=”app_data1“>value</Result>

 <Result name=”app_data2“>value</Result>

 <Result></Result>

</Response>

pg. 45 © Copyright 2020, Sertainty Corporation

Formalname Formal name of the user.

Description User description.

Email User email address.

Privileges Comma-separated list of assigned privileges.

App_data1 Optional application data that is passed back to the
application during remote user validation.

App_data2 Optional application data that is passed back to the
application during remote user validation.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::getUserId

Fetches UXP ID from the delegate service. Current session must be the requested user or
have UserAdmin role privilege to get user information.

Format:

Function Arguments:

username Required Name of the user who owns the UXP ID.

Idname Required Name of the UXP ID to fetch.

Returns:

<Request>

 <Session>session-id</Session>

 <Function>ds::getUserId</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“idname”>value</Argument>

 </ArgList>

</Request>

pg. 46 © Copyright 2020, Sertainty Corporation

Return Arguments:

username User own owns the UXP ID.

Idname Name of the UXP ID.

Flags Bitmask indicating the type of UXP ID. Possible bit values:

1 – ID is private to the owner.

2 – ID is public and may be used by others.

4 – ID is used for delegate resolution.

8 – ID is for delegate service session
authentication.

To subscribe to a delegate, a user must have a UXP ID
with the flag set for delegate resolution.

Additionally, at least one UXP ID must existing having the
session flag set; otherwise, a user will not be able to
manage their user settings on the delegate service.

Description UXP ID description.

Uxpid Binary UXP ID in iic format. Buffer will be encoded in
base64.

source Source XML document that defines the ID. This value can
only be viewed or changed by the UXP ID owner.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::getUsers

Gets a list of users.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”username”>value</Result>

 <Result name=”idname”>value</Result>

 <Result name=”flags“>value</Result>

 <Result name=”description“>value</Result>

 <Result name=”uxpid“>value</Result>

 <Result name=”source“>value</Result>

 <Result></Result>

</Response>

pg. 47 © Copyright 2020, Sertainty Corporation

Function Arguments:

Username
Optional Username filter. SQL LIKE operator is

supported.

Startrow
Optional Specifies a start row for the matching user

list.

Maxrows
Optional Specifies the maximum number of rows to

fetch from the matching user list.

Returns:

Return Arguments:

username-n User name

Notes: This operation requires ADMIN privileges for the current user.

 ds::getUserIds

Gets a list of UXP IDs for a user.

Format:

<Request>

 <Session>session-id</Session>

 <Function>ds::getUsers</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“startrow”>value</Argument>

 <Argument name=“maxrows”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”username-1”>value</Result>

 <Result name=”username-2”>value</Result>

 <Result name=”username-n”>value</Result>

 </ResultList>

</Response>

pg. 48 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Specifies the owner of UXP IDs.

Flags Required Bitmask as a filter. Possible bit values:

1 – ID is private to the owner.

2 – ID is public and may be used by
others.

4 – ID is used for delegate resolution.

8 – ID is for delegate service session
authentication.

Returns:

Return Arguments:

idname-n UXP ID name

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 id::addConfigs

Adds a configuration to an ID definition.

Format:

<Request>

 <Session>session-id</Session>

 <Function>ds::getUserIds</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“flags”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”idname-1”>value</Result>

 <Result name=”idname-2”>value</Result>

 <Result name=”idname-n”>value</Result>

 </ResultList>

</Response>

pg. 49 © Copyright 2020, Sertainty Corporation

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

configurations Required Configurations in XML format. The
buffer must be encoded in base64.

user Optional User on which configurations will
be added. If omitted, the
configurations will be added at the
ID level.

Returns:

Return Arguments:

 id::addUser

Adds a user existing IIC to the ID definition.

Format:

<Request>

 <Session>session-id</Session>

 <Function>id::addConfigs</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“configurations”>value</Argument>

 <Argument name=“user”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

pg. 50 © Copyright 2020, Sertainty Corporation

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

uxpid Required IIC in binary format. The buffer
must be encoded in base64.

user Required User to be copied from the IIC.

Returns:

Return Arguments:

 id::applyRules

Applies a rule preset to the ID definition.

Format:

<Request>

 <Session>session-id</Session>

 <Function>id::addUser</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“uxpid”>value</Argument>

 <Argument name=“user”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>id::applyRules</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“preset”>value</Argument>

 <Argument name=“rules”>value</Argument>

 </ArgList>

</Request>

pg. 51 © Copyright 2020, Sertainty Corporation

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

preset Required Name of the existing rule preset.

rules Required Comma-separated list of rule
names to apply. An * indicates all
rules.

Returns:

Return Arguments:

 id::deleteUser

Deletes a user from an ID definition.

Format:

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

user Required User to be deleted.

Returns:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>id::deleteUser</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“user”>value</Argument>

 </ArgList>

</Request>

pg. 52 © Copyright 2020, Sertainty Corporation

Return Arguments:

 id::getRuleParameter

Gets a rule parameter from an ID definition.

Format:

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

user Optional Optional username from which the
specified rule parameter will be
read.

rule Required Name of the rule set.

parameter Required Name of the parameter from the
rule set.

Returns:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>id::getRuleValue</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“user”>value</Argument>

 <Argument name=“rule”>value</Argument>

 <Argument name=“parameter”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 53 © Copyright 2020, Sertainty Corporation

Return Arguments:

 id::getUser

Gets a user from an ID definition.

Format:

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

user Optional User name to fetch.

Returns:

Return Arguments:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”value”>value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>id::getUser</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“user”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 54 © Copyright 2020, Sertainty Corporation

 id::newDocument

Creates a new ID definition.

Format:

Function Arguments:

name Required Name of the new ID definition.

description Required Description of ID.

expiration Required Expiration in ISO string format
YYYY-MM-DDTHH:mm:ss.

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”name”>value</Result>

 <Result name=”formalname”>value</Result>

 <Result name=”email”>value</Result>

 <Result name=”privileges”>value</Result>

 <Result name=”expiration”>value</Result>

 <Result name=”ch-1”>response-value</Result>

 <Result name=”ch-2”>response-value</Result>

 <Result name=”ch-...”>response-value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>id::newDocument</Function>

 <ArgList>

 <Argument name=“name”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“personalname1”>value</Argument>

 <Argument name=“personalname2”>value</Argument>

 <Argument name=“personalname3”>value</Argument>

 <Argument name=“address1”>value</Argument>

 <Argument name=“address2”>value</Argument>

 <Argument name=“city”>value</Argument>

 <Argument name=“state”>value</Argument>

 <Argument name=“zipcode”>value</Argument>

 <Argument name=“country”>value</Argument>

 <Argument name=“phone1”>value</Argument>

 <Argument name=“phonetype1”>value</Argument>

 <Argument name=“phone2”>value</Argument>

 <Argument name=“phonetype2”>value</Argument>

 <Argument name=“phone3”>value</Argument>

 <Argument name=“phonetype3”>value</Argument>

 <Argument name=“privileges”>value</Argument>

 <Argument name=“photo”>value</Argument>

 </ArgList>

</Request>

pg. 55 © Copyright 2020, Sertainty Corporation

personalname1 Required Personal name or identifier.

personalname2 Required Personal name or identifier.

personalname3 Required Personal name or identifier.

address1 Required Street address.

address2 Required Street addresss.

city Required City name.

state Required State name.

zipcode Required Postal code.

Country Required Country name.

phone1 Required Phone number.

phonetype1 Required Descriptive name for phone.

phone2 Required Phone number.

phonetype2 Required Descriptive name for phone.

phone3 Required Phone number.

phonetype3 Required Descriptive name for phone.

privileges Required Comma-separated list of ID
privilege names.

photo Optional JPEG photo encoded in base64.

Returns:

Return Arguments:

 id::newUser

Creates a new ID definition.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

pg. 56 © Copyright 2020, Sertainty Corporation

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

name Required Name of the new user.

email Required Email address.

expiration Required Expiration in ISO string format
YYYY-MM-DDTHH:mm:ss.

formalname Required Personal name.

privileges Required Comma-separated list of user
privilege names.

prompt-1 Required Response value for prompt.

prompt-2 Required Response value for prompt.

prompt-... Required Response value for prompt.

Returns:

Return Arguments:

 id::publish

<Request>

 <Session>session-id</Session>

 <Function>id::newUser</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“email”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“formalname”>value</Argument>

 <Argument name=“privileges”>value</Argument>

 <Argument name=“prompt-1”>value</Argument>

 <Argument name=“prompt-2”>value</Argument>

 <Argument name=“prompt-...”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

pg. 57 © Copyright 2020, Sertainty Corporation

Publishes an ID definition to an IIC.

Format:

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

options Optional Comma-separated list of options.
Possible values are:

• V2ID

Indicates the new ID will
use the version 2
architecture.

• COMPRESS

Reduces the size of a
version 2 ID, but also
slightly reduces
performance when opening
a session or creating a UXP.

By default, the version 1 ID
architecture is used.

Returns:

Return Arguments:

<Request>

 <Session>session-id</Session>

 <Function>id::new</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“options”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”uxpid”>base64-value</Result>

 </ResultList>

</Response>

pg. 58 © Copyright 2020, Sertainty Corporation

 id::setRuleParameter

Sets a rule parameter in an ID definition.

Format:

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

user Optional Optional username where the rule
parameter will be modified.

rule Required Rule set name.

parameter Required Rule parameter to modify.

value Required New value to be assigned to the
rule parameter.

Returns:

Return Arguments:

 id::update

Updates an ID definition properties.

<Request>

 <Session>session-id</Session>

 <Function>id::deleteUser</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“user”>value</Argument>

 <Argument name=“rule”>value</Argument>

 <Argument name=“parameter”>value</Argument>

 <Argument name=“value”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

pg. 59 © Copyright 2020, Sertainty Corporation

Format:

Function Arguments:

iddefinition Required ID definition in XML format. The

buffer must be encoded base64.

name Required Name of the new ID definition.

description Required Description of ID.

expiration Required Expiration in ISO string YYYY-MM-
DDTHH:mm:ss.

personalname1 Required Personal name or identifier.

personalname2 Required Personal name or identifier.

personalname3 Required Personal name or identifier.

address1 Required Street address.

address2 Required Street addresss.

city Required City name.

state Required State name.

zipcode Required Postal code.

Country Required Country name.

phone1 Required Phone number.

<Request>

 <Session>session-id</Session>

 <Function>id::update</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“personalname1”>value</Argument>

 <Argument name=“personalname2”>value</Argument>

 <Argument name=“personalname3”>value</Argument>

 <Argument name=“address1”>value</Argument>

 <Argument name=“address2”>value</Argument>

 <Argument name=“city”>value</Argument>

 <Argument name=“state”>value</Argument>

 <Argument name=“zipcode”>value</Argument>

 <Argument name=“country”>value</Argument>

 <Argument name=“phone1”>value</Argument>

 <Argument name=“phonetype1”>value</Argument>

 <Argument name=“phone2”>value</Argument>

 <Argument name=“phonetype2”>value</Argument>

 <Argument name=“phone3”>value</Argument>

 <Argument name=“phonetype3”>value</Argument>

 <Argument name=“privileges”>value</Argument>

 <Argument name=“photo”>value</Argument>

 </ArgList>

</Request>

pg. 60 © Copyright 2020, Sertainty Corporation

phonetype1 Required Descriptive name for phone.

phone2 Required Phone number.

phonetype2 Required Descriptive name for phone.

phone3 Required Phone number.

phonetype3 Required Descriptive name for phone.

privileges Required Comma-separated list of ID
privilege names.

photo Optional JPEG photo encoded in base64.

Returns:

Return Arguments:

 id::updateUser

Updates a user in an ID definition.

Format:

Function Arguments:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>id::newUser</Function>

 <ArgList>

 <Argument name=“iddefinition”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“email”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“formalname”>value</Argument>

 <Argument name=“privileges”>value</Argument>

 <Argument name=“prompt-1”>value</Argument>

 <Argument name=“prompt-2”>value</Argument>

 <Argument name=“prompt-...”>value</Argument>

 </ArgList>

</Request>

pg. 61 © Copyright 2020, Sertainty Corporation

iddefinition Required ID definition in XML format. The
buffer must be encoded base64.

name Required Name of the user to update.

email Required Email address.

expiration Required Expiration in ISO string format
YYYY-MM-DDTHH:mm:ss.

formalname Required Personal name.

privileges Required Comma-separated list of user
privilege names.

prompt-1 Required Response value for prompt.

prompt-2 Required Response value for prompt.

prompt-... Required Response value for prompt.

Returns:

Return Arguments:

 dl::newDelegate

Adds a new delegate name.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”iddefinition”>base64-value</Result>

 </ResultList>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>dl::newDelegate</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“permit_offline”>value</Argument>

 <Argument name=“offline_duration”>value</Argument>

 <Argument name=“access_max”>value</Argument>

 <Argument name=“flags”>value</Argument>

 </ArgList>

</Request>

pg. 62 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name for the new delegate.

Name Required Name of the new delegate.

Description Optional Description of the delegate.

Expiration Optional Date at which subscription expires.
A zero indicates no expiration. If
the date is a positive integer, it is
interpreted as the number of
milliseconds since epoch. If the
date is a string, it must be in the
ISO date format YYYY-MM-
DDTHH:mm:ss.

Permit_offline Optional A 1 value will permit offline access
to the UXP object. Otherwise, the
delegate must be resolved by
contacting the delegate service.

Offline_duration Optional For offline access, specifies the
number of hours that offline access
will be permitted. The expiration of
offline access is calculated based on
the last time online access was
obtained.

Access_max Optional Maximum number of successful
accesses for the subscriber. A value
of zero indicates no limit.

Flags Optional Flags to control delegate visibility
and behavior. Possible values:

 1 – Delegate can be fetched by
anonymous user

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 63 © Copyright 2020, Sertainty Corporation

 ds::newUser

Adds a new user to the delegate service.

Format:

Function Arguments:

username Required Name of the new user. Must be the

same as a within the UXP Identity.

Formalname Optional Formal name of the user.

Description Optional User description.

Email Optional User email address.

Privileges Required Comma-separated list of assigned
privileges. Possible values are:

• ADMIN

• JOURNAL

app_data1 Optional Optional application data that is passed
back to the application during remote
user validation.

App_data2 Optional Optional application data that is passed
back to the application during remote
user validation.

Returns:

Return Arguments:

None

<Request>

 <Session>session-id</Session>

 <Function>ds::newUser</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“formatname”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“email”>value</Argument>

 <Argument name=“privileges”>value</Argument>

 <Argument name=“app_data1”>value</Argument>

 <Argument name=“app_data2”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 64 © Copyright 2020, Sertainty Corporation

Notes: This operation requires ADMIN privileges for the current user.

 ds::newUserId

Adds a new UXP ID for a user.

Format:

Function Arguments:

username Required Name of the owner of the new UXP ID.

Must be the same as a within the UXP
Identity.

Idname Required Name of the UXP ID.

Flags Required Bitmask indicating the type of UXP ID.
Possible bit values:

1 – ID is private to the owner.

2 – ID is public and may be used by
others.

4 – ID is used for delegate
resolution.

8 – ID is for delegate service
session authentication.

To subscribe to a delegate, a user must
have a UXP ID with the flag set for
delegate resolution.

Additionally, at least one UXP ID must
existing having the session flag set;
otherwise, a user will not be able to
manage their user settings on the delegate
service.

Description Required UXP ID description.

Uxpid Required Binary UXP ID in iic format. Buffer must be

<Request>

 <Session>session-id</Session>

 <Function>ds::newUserId</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“idname”>value</Argument>

 <Argument name=“flags”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“uxpid”>value</Argument>

 <Argument name=“source”>value</Argument>

 </ArgList>

</Request>

pg. 65 © Copyright 2020, Sertainty Corporation

encoded in base64.

source Optional Source XML document that defines the ID.
This value can only be viewed or changed
by the UXP ID owner.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
ID owner is not the same as the current user.

 ds::openDatabase
Opens server database.

Format:

Function Arguments:

database Required Complete file specification of the server database.

Readonly Required True if opening database in read-only mode.

Returns:

Return Arguments:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::openDatabase</Function>

 <ArgList>

 <Argument name=“database”>value</Argument>

 <Argument name=“readonly”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 66 © Copyright 2020, Sertainty Corporation

None

 ds::openSession

Opens a session to the Services maintenance service. The session must be authenticated to
be operational.

Format:

Function Arguments:

username Required Username under which to authenticate.

stop_time Optional Sets the timeout option. Possible

values:

0 - Session will timeout based

on the UXP ID idle time

settings.

1 – Disables timeouts.

N - Stops the session at this

absolute time. Number of

milliseconds since Epoch.

Default: 0

Returns:

Return Arguments:

session-id System-assigned number.

<Request>

 <Session>session-id</Session>

 <Function>ds::openSession</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=”stop_time”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”session-id”>value</Result>

 </ResultList>

</Response>

pg. 67 © Copyright 2020, Sertainty Corporation

 ds::publishUserId

Publishes UXP ID for a user.

Format:

Function Arguments:

username Required Name of the owner of the UXP ID.

Idname Required Name of the UXP ID.

save Required When true, the compiled UXP ID will be
saved in the delegate service database.

Options Optional Comma-separated list of options.
Possible values are:

• V2ID

Indicates the new ID will use the
version 2 architecture.

• COMPRESS

Reduces the size of a version 2 ID,
but also slightly reduces
performance when opening a
session or creating a UXP.

By default, the version 1 ID architecture is
used.

Returns:

Return Arguments:

<Request>

 <Session>session-id</Session>

 <Function>ds::newUserId</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“idname”>value</Argument>

 <Argument name=“save”>value</Argument>

 <Argument name=“options”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”uxpid”>value</Result>

 </ResultList>

</Response>

pg. 68 © Copyright 2020, Sertainty Corporation

uxpid UXP ID as a base-64 string.

Notes: This operation requires ADMIN privileges for the current user if the
ID owner is not the same as the current user.

 dl::sendDelegateID

Sends a Sertainty delegate ID to a registered user. The user can then the ID to access a
delegate list within a UXP.

Format:

Function Arguments:

owner Required Owner name of the delegate.

Name Required Name of the delegate.

Username Required User to receive delegate ID. The
email address will come from the
user’s account on the delegate
service.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

<Request>

 <Session>session-id</Session>

 <Function>dl::sendDelegateID</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 69 © Copyright 2020, Sertainty Corporation

 dl::sendDelegateIDToAddress

Sends a Sertainty delegate ID to an email address. The user can then the ID
to access a delegate list within a UXP.

Format:

Function Arguments:

owner Required Owner name of the delegate.

Name Required Name of the delegate.

Address Required Email address to receive
delegate ID.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 ds::setServer

Sets the URL for the current server. The URL must be set before creating delegates. If the
server URL changes, current delegates will be regenerated. Any delegate already in use by a
UXP will no longer permit remote validation.

To enable a private test server, set the URL to file:///localhost. This will call the delegate
service via a local dynamic library instead of using the HTTP protocol.

Format:

<Request>

 <Session>session-id</Session>

 <Function>dl::sendDelegateIDToAddress</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“address”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

/localhost

pg. 70 © Copyright 2020, Sertainty Corporation

Function Arguments:

server Required Server URL.

Returns:

Return Arguments:

None

Notes: This operation requires SYSADMIN privileges for the current user.

 ds::setSystemFlags

Sets the system flags for the current server.

Format:

Function Arguments:

flags Required Flags value as a bitmask. Support values

are:

1 – Record all data updates in the
journal.

<Request>

 <Session>session-id</Session>

 <Function>ds::setServer</Function>

 <ArgList>

 <Argument name=“server”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::setSystemFlags</Function>

 <ArgList>

 <Argument name=“flags”>value</Argument>

 </ArgList>

</Request>

pg. 71 © Copyright 2020, Sertainty Corporation

2 – Record delegate lookup in the
journal.

4 – Record session authentication in
the journal.

Returns:

Return Arguments:

None

Notes: This operation requires SYSADMIN privileges for the current user.

 dl::subscribe

Adds a user to a delegate user list.

Format:

Function Arguments:

owner Required Owner name of the delegate.

Name Required Name of the delegate.

Username Required User to be added to the delegate
user list. The user must be a valid
user in the delegate service
database.

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>dl::subscribe</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“username”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“permit_offline”>value</Argument>

 <Argument name=“offline_expiration”>value</Argument>

 <Argument name=“access_max”>value</Argument>

 <Argument name=“access_count”>value</Argument>

 </ArgList>

</Request>

pg. 72 © Copyright 2020, Sertainty Corporation

Expiration Optional Date at which subscription expires.
A zero indicates no expiration. A -1
indicates use the value from the
delegate. If the date is a positive
integer, it is interpreted as the
number of milliseconds since epoch.
If the date is a string, it must be in
the ISO date format YYYY-MM-
DDTHH:mm:ss.

Permit_offline Optional A 1 value will permit offline access
to the UXP object. Otherwise, the
delegate must be resolved by
contacting the delegate service. A -
1 indicates use the value from the
delegate.

Offline_duration Optional For offline access, specifies the
number of hours that offline access
will be permitted. The expiration of
offline access is calculated based on
the last time online access was
obtained. A -1 indicates use the
value from the delegate.

Access_max Optional Maximum number of successful
accesses for the subscriber. A value
of zero indicates no limit. A value of
-1 indicates use the value from the
delegate.

Access_count Optional Sets the currnt access count for the
subscriber.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 dl::unsubscribe

Deletes a user from a delegate user list.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 73 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name of the delegate.

Name Required Name of the delegate.

Username Required User to be deleted from the delegate user
list.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 dl::unsubscribeAll

Deletes a user from all delegate lists.

Format:

Function Arguments:

<Request>

 <Session>session-id</Session>

 <Function>dl::unsubscribe</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>dl::unsubscribe</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 </ArgList>

</Request>

pg. 74 © Copyright 2020, Sertainty Corporation

username Required User to be deleted from all delegate lists.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user.

 dl::updateDelegate

Updates an existing delegate.

Format:

Function Arguments:

owner Required Owner name for the delegate.

Name Required Name of the delegate.

Description Optional Description of the delegate.

Expiration Optional Date at which subscription expires.
A zero indicates no expiration. If the
date is a positive integer, it is
interpreted as the number of
milliseconds since epoch. If the date
is a string, it must be in the ISO date

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>dl::updateDelegate</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“permit_offline”>value</Argument>

 <Argument name=“offline_duration”>value</Argument>

 <Argument name=“access_max”>value</Argument>

 <Argument name=“flags”>value</Argument>

 </ArgList>

</Request>

pg. 75 © Copyright 2020, Sertainty Corporation

format YYYY-MM-DDTHH:mm:ss.

Permit_offline Optional A 1 value will permit offline access
to the UXP object. Otherwise, the
delegate must be resolved by
contacting the delegate service.

Offline_duration Optional For offline access, specifies the
number of hours that offline access
will be permitted. The expiration of
offline access is calculated based on
the last time online access was
obtained.

Access_max Optional Maximum number of successful
accesses for the subscriber. A value
of zero indicates no limit.

Flags Optional Flags to control delegate visibility
and behavior. Possible values:

 1 – Delegate can be fetched by
anonymous user

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

 dl::updateSubscription

Updates the subscription attributes. Current session must be the requested user or have
UserAdmin role privilege to get user information.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 76 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name for the delegate.

Name Required Name of the delegate.

Member Required Name of the user who is subscribed.

Expiration Optional Date at which subscription expires. A
zero indicates no expiration. A -1
indicates use the value from the
delegate. If the date is a positive
integer, it is interpreted as the number
of milliseconds since epoch. If the date
is a string, it must be in the ISO date
format YYYY-MM-DDTHH:mm:ss.

Permit_offline Optional A 1 value will permit offline access to the
UXP object. Otherwise, the delegate
must be resolved by contacting the
delegate service. A -1 indicates use the
value from the delegate.

Offline_duration Optional For offline access, specifies the number
of hours that offline access will be
permitted. The expiration of offline
access is calculated based on the last
time online access was obtained. A -1
indicates use the value from the
delegate.

Access_max Optional Maximum number of successful accesses
for the subscriber. A value of zero
indicates no limit. A value of -1 indicates
use the value from the delegate.

Access_count Optional Sets the currnt access count for the
subscriber.

Returns:

<Request>

 <Session>session-id</Session>

 <Function>dl::updateSubscription</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“member”>value</Argument>

 <Argument name=“expiration”>value</Argument>

 <Argument name=“permit_offline”>value</Argument>

 <Argument name=“offline_duration”>value</Argument>

 <Argument name=“access_max”>value</Argument>

 <Argument name=“access_count”>value</Argument>

 </ArgList>

</Request>

pg. 77 © Copyright 2020, Sertainty Corporation

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::updateUser

Updates a user in the delegate service. Current session must have UserAdmin role privilege
to update a user. Only specified columns will be updated in the user record.

Format:

Function Arguments:

username Required Name of the user to update. Must

be the same as a within the UXP

Identity.

Formalname Optional Formal name of the user.

Description Optional User description.

Email Optional User email address.

Privileges Required Comma-separated list of assigned

privileges.

App_data1 Optional Optional application data that

is passed back to the

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::updateUser</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“formalname”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“email”>value</Argument>

 <Argument name=“privileges”>value</Argument>

 <Argument name=“app_data1”>value</Argument>

 <Argument name=“app_data2”>value</Argument>

 </ArgList>

</Request>

pg. 78 © Copyright 2020, Sertainty Corporation

application during remote user

validation.

App_data2 Optional Optional application data that

is passed back to the

application during remote user

validation.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::updateUserId

Updates UXP ID for a user. Only specified columns will be updated in the UXP ID record.

Format:

Function Arguments:

username Required Name of the owner of the new UXP ID.

Must be the same as a within the UXP
Identity

idname Required Name of the UXP ID.

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

<Request>

 <Session>session-id</Session>

 <Function>ds::updateUserId</Function>

 <ArgList>

 <Argument name=“username”>value</Argument>

 <Argument name=“idname”>value</Argument>

 <Argument name=“flags”>value</Argument>

 <Argument name=“description”>value</Argument>

 <Argument name=“uxpid”>value</Argument>

 <Argument name=“source”>value</Argument>

 </ArgList>

</Request>

pg. 79 © Copyright 2020, Sertainty Corporation

Flags Optional Bitmask indicating the type of UXP ID.
Possible bit values:

1 – ID is private to the owner.

2 – ID is public and may be used by
others.

4 – ID is used for delegate
resolution.

8 – ID is for delegate service session
authentication.

To subscribe to a delegate, a user must
have a UXP ID with the flag set for delegate
resolution.

Additionally, at least one UXP ID must
existing having the session flag set;
otherwise, a user will not be able to
manage their user settings on the delegate
service.

Description Optional UXP ID description.

Uxpid Optional Binary UXP ID in iic format. Buffer must be
encoded in base64.

source Optional Source XML document that defines the ID.
This value can only be viewed or changed
by the UXP ID owner.

Returns:

Return Arguments:

None

Notes: This operation requires ADMIN privileges for the current user if the
ID owner is not the same as the current user.

 verifyDelegateID

Verifies a Sertainty delegate ID. The ID must match the ID at the registered delegate service.

Format:

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

</Response>

pg. 80 © Copyright 2020, Sertainty Corporation

Function Arguments:

owner Required Owner name of the delegate.

Name Required Name of the delegate.

Uxpid Required The UXP ID to verify. To be

valid, the ID must be owned by

the specified delegate owner

and name. The ID checksum

must match as well. Buffer

must be encoded in base64.

Returns:

Return Arguments:

valid True if the delegate ID is valid and verified.

Notes: This operation requires ADMIN privileges for the current user if the
delegate owner is not the same as the current user.

<Request>

 <Session>session-id</Session>

 <Function>subscribe</Function>

 <ArgList>

 <Argument name=“owner”>value</Argument>

 <Argument name=“name”>value</Argument>

 <Argument name=“uxpid”>value</Argument>

 </ArgList>

</Request>

<Response>

 <Status>error-code</Status>

 <StatusMessage>error-message</StatusMessage>

 <ResultList>

 <Result name=”valid”>value</Result>

 </ResultList>

</Response>

pg. 81 © Copyright 2020, Sertainty Corporation

6. UXL Scripting Functions

The script engine is a command line interface to the UXP Technology. The delegate service
has defined a set of external UXL functions that can be accessed via the script engine.

The delegate functions can be loaded using the following UXL function:

Where delegate-lib-name is the delegate service shared library name. Once loaded, the
identity delegate functions can be accessed. The library names by platform:

Linux: libSertaintyDelegate

MacOSX: libSertaintyDelegate

Windows: SertaintyDelegate1

Table 9 – Function Summary

Function Description

dl::deleteDelegate Deletes an existing delegate name.

dl::deleteDelegateAll Deletes all delegates for a user.

dl::getDelegate Gets the requested delegate.

dl::getDelegates Gets a list of available delegate names for the
specified user.

dl::getPublicDelegate Gets the requested public delegate.

dl::getPublicDelegates Gets a list of available public delegate names
for the specified user.

dl::getSubscribers Gets a delegate user list.

dl::getSubscription Gets subscription attributes.

dl::getSubscriptions Gets a list of delegates to which the user has
subscribed.

dl::newDelegate Adds a new delegate name.

dl::sendDelegateID Sends a delegate ID to a registered user.

dl::sendDelegateIDToAddress Sends a delegate ID to an email address.

dl::subscribe Adds a user to a delegate user list.

dl::unsubscribe Removes a user from a delegate user list.

dl::unsubscribeAll Removes a user from all delegate lists.

dl::updateDelegate Updates an existing delegate.

x::loadPackage(“*”, “delegate-lib-name”)

pg. 82 © Copyright 2020, Sertainty Corporation

dl::updateSubscription Updates subscription attributes.

dl::verifyDelegateID Verifies a delegate ID with the registered
server.

ds::authenticate Authenticates a delegate maintenance session.

ds::closeDatabase Closes a delegate service database.

ds::closeSession Closes a delegate maintenance session.

ds::deleteJournal Deletes old rows from the journal of activities.

ds::deleteUser Deletes a delegate user.

ds::deleteUserId Deletes a UXP ID for a user.

ds::dropDatabase Deletes local UXP and external entities.

ds::getAccessCode Gets the current user access code.

ds::getChallenges Gets the list of challenges as required by the
ds::authenticate call.

ds::getDatabaseParameters Gets the list of external database parameters.

ds::getJournal Gets the current journal of activities.

ds::getServer Gets the URL for the current server.

ds::getSystemFlags Gets the system flags for the current server.

ds::getUser Gets delegate user properties.

ds::getUserId Gets a UXP ID for a user.

ds::getUserIds Gets a list of UXP IDs for a user.

ds::getUsers Gets a list of users.

ds::initDatabase Initializes a new delegate service database.

ds::newUser Adds a delegate user.

ds::newUserId Adds a UXP ID for a user.

ds::openDatabase Opens the delegate service database.

ds::openSession Opens a new delegate maintenance session.

ds::publishUserId Publishes a UXP ID for a user.

ds::setAccessCode Sets the user access code.

ds::setDatabaseParameters Sets the external database parameters.

ds::setResponses Sets the required responses for the
ds::authenticate call.

ds::setServer Sets the URL for the current server.

ds::setSystemFlags Sets the system flags for the current server.

ds::updateUser Updates a delegate user.

ds::updateUserid Updates a UXP ID for a user.

event::countEvents Counts UXP event records.

event::deleteEvents Deletes UXP event records.

event::getEvents Gets selected UXP event records.

pg. 83 © Copyright 2020, Sertainty Corporation

 ds::authenticate

Authenticates the current Services session.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Returns:

status Status of authentication attempt. Possible values:

StatusAuthorized Session is ready to be used for
delegate operations.

StatusCanceled Authentication attempt has been
canceled.

StatusChallenged User must respond to challenges.
Challenges must be retrieved using
ds::getChallenges.

StatusNotAuthorized Authentication failed.

 ds::closeDatabase

Closes the specified delegate service database.

Format:

Parameters:

ds::authenticate(db, session)

ds::closeDatabase (db)

pg. 84 © Copyright 2020, Sertainty Corporation

db Specifies the database handle as returned by ds::openDatabase.

Returns:

 True if successful.

 ds::closeSession

Closes the specified Services session.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Returns:

 True if successful.

 ds::deleteJournal

Deletes journal records.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

ds::closeSession (session)

ds::deleteJournal(db, session, filter)

pg. 85 © Copyright 2020, Sertainty Corporation

Filter Specifies an optional table of filters to apply to delete
operation. Possible filter columns:

• auth_username – User who performed activity.

• username – User referenced by activity.

• delegateowner – Delegate owner.

• delegatename – Delegate name.

• startdate – Milliseconds since Epoch.

• enddate – Milliseconds since Epoch.

A filter is a list of value/pair entries.

Example:

list mylist;

ValuePair pair;

pair.name=”username”;

pair.value=”Greg”;

appendList(mylist, pair);

Returns:

 True if successful.

Notes: This operation requires JOURNAL privileges for the current user.

 dl::deleteDelegate
Deletes a delegate.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

dl::deleteDelegate (db, session, owner, name)

pg. 86 © Copyright 2020, Sertainty Corporation

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::deleteDelegateAll
Deletes all delegates for a user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate’s owner name.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 ds::deleteUser

Deletes a user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

dl::deleteDelegateAll (db, session, owner)

ds::deleteUser (db, session, username)

pg. 87 © Copyright 2020, Sertainty Corporation

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user name.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user.

 ds::dropDatabase

Drops a Services database. For external entities, will only drop the SQL artifacts and not the
database.

Format:

Parameters:

spec Specifies the database file specification.

Dbmod Optional database module that implements an external
database. Possible values:

• UXP Use the native UXP SQL access module.

• MySQL Use the MySQL database module.

• Oracle Use the Oracle database module (Under
construction).

• SQLServer Use the SQL Server database module
(Windows-only) (Under construction).

Default: UXP

dbparams Optional list of database parameters for external database
module. Parameters are a string separated by a ‘|’ character.
The parameters must be specified in the correct order based
on the database module:

• UXP ignores the parameters.

• MySQL uses the following parameters:

o Database host name.

o Database port number.

o Database user password for user uxpds.

• Oracle Not implemented.

ds::dropDatabase (spec, [,dbmod, dbparams])

pg. 88 © Copyright 2020, Sertainty Corporation

• SQLServer Not implemented.

Returns:

 True if successful.

 ds::getChallenges

Retrieves the current set of challenges for an authentication session.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Returns:

Packed challenge list. The format of the list is
name|prompt||name2|prompt.

• Name is the challenge name.

• Prompt is the challenge user prompt.

 ds::getJournal

Fetches journal records.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by

ds::getChallenges (db, session)

ds::getJournal(db, session, filter, &list)

pg. 89 © Copyright 2020, Sertainty Corporation

ds::openSession.

Filter Specifies an optional table of filters to apply to fetch
operation. Possible filter columns:

• action – Action keyword for journal entry.

• auth_username – User who performed activity.

• username – User referenced by activity.

• delegateowner – Delegate owner.

• delegatename – Delegate name.

• startdate – Milliseconds since Epoch.

• enddate – Milliseconds since Epoch.

• startrow – Starting row number to fetch.

• maxrows – Maximum number of rows to fetch.

A filter is a list of value/pair entries.

Example:

list mylist;

ValuePair pair;

pair.name=”username”;

pair.value=”Greg”;

appendList(mylist, pair);

list A list variable to receive fetched rows. Each row is a string of

column values separated by the ‘|’ character. Column values
are:

• Date/time of entry in ISO format

• Status of operation (0 – success, 1 – error)

• Authorized username

• Username who initiated operation (if applicable)

• Message describing operation

• Delegate owner (if applicable)

• Delegate name (if applicable)

• Action keyword

Returns:

 True if successful.

Notes: This operation requires JOURNAL privileges for the current user.

pg. 90 © Copyright 2020, Sertainty Corporation

 ds::getAccessCode

Gets the user access code. The access code is used to protect a message when using the
WEB service interface.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Returns:

 Current user access code.

Notes: This operation requires ADMIN.

 ds::getDatabaseParameters
Fetches the external database parameters. Parameters are specific to the type of external
database.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

List A list variable to receive fetched parameter values.

The parameters must be specified in the correct order based
on the database module:

• UXP ignores the parameters.

• MySQL uses the following parameters:

o Database host name.

o Database port number.

ds::getAccessCode(db, session)

ds::getDatabaseparameters(db, session, &list)

pg. 91 © Copyright 2020, Sertainty Corporation

o Database user password for user uxpds.

• Oracle Not implemented.

• SQLServer Not implemented.

Returns:

 True if successful.

Notes: This operation requires SYSADMIN privileges for the current user.

 dl::getDelegate

Gets the specified delegate data.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

description A sentence describing the delegate.

Expiration Date at which subscription expires. A zero indicates
no expiration. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A value of 1 permits offline delegate resolution for
the user.

Offline_duration Number of hours that offline access is permitted.
Offline access with expire based on the number of
hours since last online delegate resolution.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit.

dl::getDelegate(db, session, owner, name, &description,

 &expiration, &permit_offline,

 &offline_duration, &access_max, &flags,

 &checksum, &uxpid)

pg. 92 © Copyright 2020, Sertainty Corporation

Flags Flags to control delegate visibility and behavior.
Possible values:

 1 – Delegate can be fetched by anonymous user

Checksum The UXP ID checksum.

Uxpid The UXP ID that can be embedded in a workgroup ID
as a delegate user.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::getDelegates
Fetches delegate names.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the owner of the requested delegates.

List A list variable to receive fetched names.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::getPublicDelegate

Gets the specified public delegate data.

dl::getDelegates(db, session, owner, &list)

pg. 93 © Copyright 2020, Sertainty Corporation

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

description A sentence describing the delegate.

Checksum The UXP ID checksum.

Uxpid The UXP ID that can be embedded in a workgroup ID
as a delegate user.

Returns:

 True if successful.

 dl::getPublictDelegates
Fetches public delegate names.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Owner Specifies the owner of the requested delegates.

List A list variable to receive fetched names.

Returns:

 True if successful.

dl::getPublicDelegate(db, owner, name, &description,

 &checksum, &uxpid)

dl::getPublicDelegates(db, owner, &list)

pg. 94 © Copyright 2020, Sertainty Corporation

 ds::getServer
Gets the URL for the current server. The server URL value must be set prior to creating
delegates.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Returns:

 Server URL.

 ds::getSystemFlags
Gets the system flags for the current server.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Returns:

 System flags.

Notes: This operation requires SYSADMIN privileges for the current user.

 dl::getSubscribers

ds::getServer(db, session)

ds::getSystemFlags(db, session)

pg. 95 © Copyright 2020, Sertainty Corporation

Gets a delegate user list.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

Filter Specifies an optional table of filters to apply to fetch
operation. Possible filter columns:

• username – User name filter. Supports SQL LIKE
syntax.

• startrow – Starting row number to fetch.

• maxrows – Maximum number of rows to fetch.

A filter is a list of value/pair entries.

Example:

list mylist;

ValuePair pair;

pair.name=”username”;

pair.value=”Greg”;

appendList(mylist, pair);

list A list variable to receive fetched user names.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

dl::getSubscribers(db, session, owner, name, filter, &list)

pg. 96 © Copyright 2020, Sertainty Corporation

 dl::getSubscription

Gets a user’s delegate subscription.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

username Specifies the user name.

expiration Date at which subscription expires. A zero indicates
no expiration. A -1 indicates use the value from the
delegate.

Permit_offline A value of 1 permits offline delegate resolution for
the user. A -1 indicates use the value from the
delegate.

Offline_duration Number of hours that offline access is permitted.
Offline access with expire based on the number of
hours since last online delegate resolution. A -1
indicates use the value from the delegate.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit. A
value of -1 indicates use the value from the
delegate.

Access_count Current successful access count.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

dl::getSubscription(db, session, owner, name, username,

 &expiration, &permit_offline,

 &offline_duration, &access_max,

 &access_count)

pg. 97 © Copyright 2020, Sertainty Corporation

 dl::getSubscriptions
Gets a user’s delegate subscriptions.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user name.

list A list variable to receive fetched user names. Each row is a
value/pair where the first value is the delegate owner and
the second value is a delegate name.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::getUser

Get the specified user data.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user to fetch.

dl::getSubscriptions(db, session, username, &list)

ds::getUser(db, session, username, &formaname,

 &description, &email, &privileges,

 &app_data1, &app_data2)

pg. 98 © Copyright 2020, Sertainty Corporation

Formalname Formal name of user.

Description Descriptive sentence for the user.

Email Email address of user.

Privileges Privileges for the user. Possible bit values are:
o 1 – Normal privileges
o 2 – ADMIN
o 4 – JOURNAL

app_data1 Optional application data that is passed back to the
application during remote user validation.

App_data2 Optional application data that is passed back to the
application during remote user validation.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::getUserId

Get the specified user UXP ID.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user who owns the UXP ID.

Idname Specifies the UXP ID to fetch.

Flags Indicates type of UXP ID. Possible bit values:

• 1 – ID is private to the owner.

• 2 – ID is public and may be used by others.

• 4 – ID is used for delegate resolution.

• 8 – ID is for delegate service session authentication.

ds::getUserId (db, session, username, idname, &flags,

 &description, &uxpid, &source)

pg. 99 © Copyright 2020, Sertainty Corporation

To subscribe to a delegate, a user must have a UXP ID with

the flag set for delegate resolution.

Additionally, at least one UXP ID must existing having the

session flag set; otherwise, a user will not be able to

manage their user settings on the delegate service.
Description Descriptive sentence for the ID.

Uxpid Binary UXP ID of user

source Source of the ID in XML format. Can only be viewed or
edited by the owner of the UXP ID.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::getUsers

Fetches user names.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Filter Specifies an optional table of filters to apply to fetch
operation. Possible filter columns:

• username – User name filter. Supports SQL LIKE
syntax.

• startrow – Starting row number to fetch.

• maxrows – Maximum number of rows to fetch.

A filter is a list of value/pair entries.

ds::getUsers(db, session, filter, &list)

pg. 100 © Copyright 2020, Sertainty Corporation

Example:

list mylist;

ValuePair pair;

pair.name=”username”;

pair.value=”Greg”;

appendList(mylist, pair);

List A list variable to receive fetched names.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user.

 ds::getUserIds

Fetches UXP IDs for a user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Usernmae User who owns the UXP IDs.

Flags Bitmask as a filter. Possible bit values:

1 – ID is private to the owner.

2 – ID is public and may be used by others.

4 – ID is used for delegate resolution.

8 – ID is for delegate service session authentication.

List A list variable to receive fetched names.

L

Returns:

 True if successful.

ds::getUserIds(db, session, username, flags, &list)

pg. 101 © Copyright 2020, Sertainty Corporation

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::initDatabase

Initializes a new delegate service database.

Format:

Parameters:

spec Specifies the database file specification. This will replace an

existing database of the same name.

id Specifies the UXP ID to be used as the system admin user.

Username Specifies the user to be set up as the system admin user. The
user must exist in the specified UXP ID.

Dbmod Optional database module that implements an external
database. Possible values:

• UXP Use the native UXP SQL access module.

• MySQL Use the MySQL database module.

• Oracle Use the Oracle database module (Under
construction).

• SQLServer Use the SQL Server database module
(Windows-only) (Under construction).

Default: UXP

dbparams Optional list of database parameters for external database
module. Parameters are a string separated by a ‘|’ character.
The parameters must be specified in the correct order based
on the database module:

• UXP ignores the parameters.

• MySQL uses the following parameters:

o Database host name.

o Database port number.

o Database user password for user uxpds.

• Oracle Not implemented.

• SQLServer Not implemented.

ds::initDatabase (spec, id, username[,dbmod, dbparams])

pg. 102 © Copyright 2020, Sertainty Corporation

Returns:

 True if successful.

 dl::newDelegate

Creates a new delegate.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

description A sentence describing the delegate.

Expiration Date at which subscription expires. A zero indicates
no expiration. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A value of 1 permits offline delegate resolution for
the user.

Offline_duration Number of hours that offline access is permitted.
Offline access with expire based on the number of
hours since last online delegate resolution.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit.

Flags Flags to control delegate visibility and behavior.
Possible values:

 1 – Delegate can be fetched by anonymous user

Returns:

 True if successful.

dl::newDelegate(db, session, owner, name, &description,

 &expiration, &permit_offline,

 &offline_duration, &access_max, &flags)

pg. 103 © Copyright 2020, Sertainty Corporation

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 ds::newUser

Creates a new user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user name.

formalname Formal name of user.
Description Descriptive sentence for the user.

Email Email address of user.
Privileges Privileges for the user. Possible bit values are:

o 1 – Normal privileges
o 2 – ADMIN
o 4 – JOURNAL

app_data1 Optional application data that is passed back to the
application during remote user validation.

App_data2 Optional application data that is passed back to the
application during remote user validation.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user.

ds::newUser(db, session, username, formalname,

 description, email, privileges.

 App_data1, app_data2)

pg. 104 © Copyright 2020, Sertainty Corporation

 ds::newUserId

Creates a new UXP ID for a user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user name.

idname Specifies the new UXP ID name.

flags Indicates type of UXP ID. Possible bit values:

• 1 – ID is private to the owner.

• 2 – ID is public and may be used by others.

• 4 – ID is used for delegate resolution.

• 8 – ID is for delegate service session authentication.

To subscribe to a delegate, a user must have a UXP ID with

the flag set for delegate resolution.

Additionally, at least one UXP ID must existing having the
session flag set; otherwise, a user will not be able to manage
their user settings on the delegate service.

Description Descriptive sentence for the ID.

Uxpid Binary UXP ID of user

source Source of the ID in XML format. Can only be viewed or
edited by the owner of the UXP ID.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified ID owner is not the same as the current user.

ds::newUserId(db, session, username, idname, flags,

 description, uxpid, source)

pg. 105 © Copyright 2020, Sertainty Corporation

 ds::openDatabase
Opens a delegate service database.

Format:

Parameters:

spec Specifies the database file specification. This will replace an

existing database of the same name.

readonly A value of true indicates delegate services database will be
open for reading only.

Returns:

 Database handle.

 ds::openSession

Opens a newServices session.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Username Userame to use for authentication. Authentication must be

performed using the ds::authenticate function.

Stop_time Sets the timeout option. Possible values:

0 – Session will timeout based on the UXP ID idle time
settings.

1 – Disables timeouts.
N – Stops the session at this absolute time. Number of

milliseconds since Epoch.

Default: 0

ds::openDatabase (spec [, readonly])

ds::openSession (db, username [, stop_time, usecb])

pg. 106 © Copyright 2020, Sertainty Corporation

usecb Optional boolean to indicate the default script callback
should be used to prompt the user. If false or not provided,
the caller must manually process challenges and responses.

Returns:

 Session handle.

 ds::publishUserId
Publishes a UXP ID for a user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user name.

idname Specifies the UXP ID name.

save If true, the new iic will be saved in the UXP ID within the
delegate database.

options Set of options separated by the ‘|’ character. Possible values
are:

• V2ID

Indicates the new ID will use the version 2
architecture.

• COMPRESS

Reduces the size of a version 2 ID, but also slightly
reduces performance when opening a session or
creating a UXP.

By default, the version 1 ID architecture is used.

Returns:

 Buffer containing UXP ID in iic format.

ds::publishUserId(db, session, username, idname, save

 [,options])

pg. 107 © Copyright 2020, Sertainty Corporation

Notes: This operation requires ADMIN privileges for the current user if the
specified ID owner is not the same as the current user.

 dl::sendDelegateID

Sends a delegate ID to a registered user.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

username Specifies the registered user to receive the delegate ID.;

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::sendDelegateIDToAddress

Sends a delegate ID to an email address.

Format:

Parameters:

dsl:sendDelegateID(db, session, owner, name, username)

dl::sendDelegateIDToAddress(db, session, owner, name,

address)

pg. 108 © Copyright 2020, Sertainty Corporation

db Specifies the database handle as returned by
ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

address Specifies the email address to receive the delegate ID.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 ds::setDatabaseParameters
Sets the external database parameters. Parameters are specific to the type of external
database.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Parameters List of database parameters for external database module.
Parameters are a string separated by a ‘|’ character. The
parameters must be specified in the correct order based on
the database module:

• UXP ignores the parameters.

• MySQL uses the following parameters:

o Database host name.

o Database port number.

o Database user password for user uxpds.

• Oracle Not implemented.

• SQLServer Not implemented.

ds::setDatabaseparameters(db, session, parameters)

pg. 109 © Copyright 2020, Sertainty Corporation

Returns:

 True if successful.

Notes: This operation requires SYSADMIN privileges for the current user.

 ds::setResponses
Sets the current set of challenge responses for a Services authentication session.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

resposes Packed list of responses for the current authentication
session. The format of the response list is:

Name1|Prompt1|Response1||Name2|Prompt2|Response2
…

Where:

• Name is the challenge name.

• Prompt is the challenge prompt.

Response is the user-supplied response value.

Returns:

 True if successful.

 ds::setServer
Sets the URL for the current server. The URL must be set before creating delegates. If the
server URL changes, current delegates will be regenerated. Any delegate already in use by a
UXP will no longer permit remote validation.

To enable a private test server, set the URL to file:///localhost. This will call the
delegate service via a local dynamic library instead of using the HTTP protocol.

Format:

ds::setResponses(db, session, responses)

ds::setServer(db, session, server_url)

/localhost

pg. 110 © Copyright 2020, Sertainty Corporation

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Server_url Specifies the URL for the current server.

Returns:

 True if successful.

Notes: This operation requires SYSADMIN privileges for the current user.

 ds::setAccessCode
Sets the user access code for the current server. The access code

is used to protect a message when using the WEB interface.

Format:

Parameters:

db Specifies the database handle as returned

by ds::openDatabase.

Session Specifies the Services session handle as

returned by ds::openSession.

code Specifies the new user access code for

the current server. Code must be 32

characters long. If longer than 32

characters, the code will be truncated. If

shorter than 32 characters, the code will be

padded with $ characters.

Returns:

 True if successful.

Notes: This operation requires SYSADMIN privileges for the current user.

ds::setAccessCode(db, session, code)

pg. 111 © Copyright 2020, Sertainty Corporation

 ds::setSystemFlags
Sets the system flags for the current server.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Flags Specifies the system flags for the current server. Flags are a
bitmask with the following supported values:

1 – Record all data updates in the journal.

2 – Record delegate lookup in the journal.

4 – Record session authentication in the journal.

Returns:

 True if successful.

Notes: This operation requires SYSADMIN privileges for the current user.

 dl::subscribe

Subscribes to the specified delegate.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

ds::setSystemFlags(db, session, flags)

dl::subscribe(db, session, owner, name, username,

 expiration, permit_offline,

 offline_duration, access_max,

 access_count)

pg. 112 © Copyright 2020, Sertainty Corporation

Owner Specifies the delegate owner name.

name Specifies the delegate name.

username User who to be subscribed to the delegate
membership.

Expiration Date at which subscription expires. A zero indicates
no expiration. A -1 indicates use the value from the
delegate. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A value of 1 permits offline delegate resolution for
the user. A -1 indicates use the value from the
delegate.

Offline_duration Number of hours that offline access is permitted.
Offline access with expire based on the number of
hours since last online delegate resolution. A -1
indicates use the value from the delegate.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit. A
value of -1 indicates use the value from the
delegate.

Access_count Sets the successful access count.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::unsubscribe

Unsubscribes from the specified delegate.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

dl::unsubscribe(db, session, owner, name, username)

pg. 113 © Copyright 2020, Sertainty Corporation

name Specifies the delegate name.

username User who is subscribed to the delegate membership.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::unsubscribeAll

Unsubscribes a user from all delegates.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username User who is subscribed to the delegate membership.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user.

 dl::updateDelegate

Updates a delegate.

Format:

dl::unsubscribe(db, session, username)

pg. 114 © Copyright 2020, Sertainty Corporation

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

description A sentence describing the delegate.

Expiration Date at which subscription expires. A zero indicates
no expiration. A -1 indicates use the value from the
delegate. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A value of 1 permits offline delegate resolution for
the user.

Offline_duration Number of hours that offline access is permitted.
Offline access with expire based on the number of
hours since last online delegate resolution.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit.

Flags Flags to control delegate visibility and behavior.
Possible values:

 1 – Delegate can be fetched by anonymous user

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 dl::updateSubscription

Updates a user’s delegate subscription.

Format:

dl::updateDelegate(db, session, owner, name, description,

 expiration, permit_offline,

 offline_duration, access_max, flags)

pg. 115 © Copyright 2020, Sertainty Corporation

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Owner Specifies the delegate owner name.

name Specifies the delegate name.

member Specifies the user name.

expiration Date at which subscription expires. A zero indicates
no expiration. A -1 indicates use the value from the
delegate. If the date is a positive integer, it is
interpreted as the number of milliseconds since
epoch. If the date is a string, it must be in the ISO
date format YYYY-MM-DDTHH:mm:ss.

Permit_offline A value of 1 permits offline delegate resolution for
the user. A -1 indicates use the value from the
delegate.

Offline_duration Number of hours that offline access is permitted.
Offline access with expire based on the number of
hours since last online delegate resolution. A -1
indicates use the value from the delegate.

Access_max Maximum number of successful accesses for the
subscriber. A value of zero indicates no limit. A value
of -1 indicates use the value from the delegate.

Access_count Sets the successful access count.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::updateUser

Updates a user.

Format:

dl::updateSubscription(db, session, owner, name, member,

 expiration, permit_offline,

 offline_duration, access_max,

 access_count)

pg. 116 © Copyright 2020, Sertainty Corporation

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

Username Specifies the user name.

formalname Formal name of user.

Description Descriptive sentence for the user.

Email Email address of user.

Privileges Privileges for the user. Possible bit values are:
o 1 – Normal privileges
o 2 – ADMIN
o 4 – JOURNAL

app_data1 Optional application data that is passed back to the
application during remote user validation.

app_data2 Optional application data that is passed back to the
application during remote user validation.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified user is not the same as the current user.

 ds::updateUserId

Updates a UXP ID for a user. Only specified columns will be updated in the UXP ID record.

Format:

Parameters:

ds::updateUser(db, session, username,formalname,

 description, email, privilege.

 app_data1, app_data2)

ds::updateUserId(db, session, username, idname, flags,

 description, uxpid, source)

pg. 117 © Copyright 2020, Sertainty Corporation

db Specifies the database handle as returned by

ds::openDatabase.

session Specifies the Services session handle as returned by
ds::openSession.

username Specifies the user name.

idname Specifies the UXP ID name.

flags Indicates type of UXP ID. Possible bit values:

• 1 – ID is private to the owner.

• 2 – ID is public and may be used by others.

• 4 – ID is used for delegate resolution.

• 8 – ID is for delegate service session authentication.

To subscribe to a delegate, a user must have a UXP ID with the

flag set for delegate resolution.

Additionally, at least one UXP ID must existing having the
session flag set; otherwise, a user will not be able to manage
their user settings on the delegate service.

description Descriptive sentence for the ID.

uxpid Binary UXP ID of user

source Source of the ID in XML format. Can only be viewed or edited
by the owner of the UXP ID.

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified ID owner is not the same as the current user.

 dl::verifyDelegateID

Verifies a delegate ID with the current server.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

dl::verifyDelegateID(db, session, owner, name, id)

pg. 118 © Copyright 2020, Sertainty Corporation

session Specifies the Services session handle as returned by
ds::openSession.

owner Specifies the delegate owner name.

name Specifies the delegate name.

id A buffer containing the delegate ID to verify.

Returns:

 True if valid and verified.

Notes: This operation requires ADMIN privileges for the current user if the
specified delegate owner is not the same as the current user.

 event::countEvents

Counts UXP event records based on an optional filter.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

owner Specifies the UXP owner name.

Filter Specifies an optional table of filters to apply to fetch
operation. Possible filter columns:

• action – Action keyword for event entry.

• uxp_name – UXP name that recorded event.

• uxp_file – File specification of UXP.

• event_date_low – Lowest event date to include.

• event_date_high – Highest event date to include.

A filter is a list of value/pair entries. Dates are strings in ISO
format.

Example:

list mylist;

ValuePair pair;

event::countEvents(db, session, owner, filter)

pg. 119 © Copyright 2020, Sertainty Corporation

pair.name=”action”;

pair.value=”New UXP”;

appendList(mylist, pair);

list A list variable to receive fetched rows. Each row is an event

record in XML format.

Returns:

 Number of matching event records.

Notes: This operation requires ADMIN privileges for the current user if the
specified UXP owner is not the same as the current user.

 event::deleteEvents

Deletes UXP event records based on an optional filter.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

Session Specifies the Services session handle as returned by
ds::openSession.

owner Specifies the UXP owner name.

Filter Specifies an optional table of filters to apply to fetch
operation. Possible filter columns:

• action – Action keyword for event entry.

• uxp_name – UXP name that recorded event.

• uxp_file – File specification of UXP.

• event_date_low – Lowest event date to include.

• event_date_high – Highest event date to include.

A filter is a list of value/pair entries. Dates are strings in ISO
format.

Example:

list mylist;

ValuePair pair;

event::deleteEvents(db, session, owner, filter)

pg. 120 © Copyright 2020, Sertainty Corporation

pair.name=”action”;

pair.value=”New UXP”;

appendList(mylist, pair);

list A list variable to receive fetched rows. Each row is an event

record in XML format.

Returns:

 True if successfule.

Notes: This operation requires ADMIN privileges for the current user if the
specified UXP owner is not the same as the current user.

 event::getEvents

Gets UXP event records based on an optional filter.

Format:

Parameters:

db Specifies the database handle as returned by

ds::openDatabase.

session Specifies the Services session handle as returned by
ds::openSession.

outlist A list variable to receive fetched rows. Each row is an event
record in XML format.

owner Specifies the UXP owner name.

filter Specifies an optional table of filters to apply to fetch
operation. Possible filter columns:

• action – Action keyword for event entry.

• uxp_name – UXP name that recorded event.

• uxp_file – File specification of UXP.

• event_date_low – Lowest event date to include.

• event_date_high – Highest event date to include.

• start_row – Starting row number after filters applied.

• count – Maximum number of rows to return.

A filter is a list of value/pair entries. Dates are strings in ISO
format.

event::getEvents(db, session, &outlist, owner, filter)

pg. 121 © Copyright 2020, Sertainty Corporation

Example:

list mylist;

ValuePair pair;

pair.name=”action”;

pair.value=”New UXP”;

appendList(mylist, pair);

Returns:

 True if successful.

Notes: This operation requires ADMIN privileges for the current user if the
specified UXP owner is not the same as the current user.

7. Error Codes

The following table lists possible error codes returned by the server API:

Table 7, Error Codes

Code Description

1 The requested operation was successful.

2 The user must respond to authentication challenges.

3 Access has been denied.

800 A general error has occurred. The corresponding text will describe the general error.

801 The delegate service database is invalid.

802 No privilege for attempted operation.

803 The delegate service database must be opened read/write.

804 The current session is invalid.

805 The specified user was not found.

806 The specified delegate was not found.

807 The user already exists.

808 The delegate already exists.

809 Cannot delete self.

810 The specified user is not a subscriber to the delegate.

811 The specified user is already a subscriber to the delegate.

812 The specified user does not match a user within the UXP ID.

813 The specified journal filter is invalid.

814 The UXP ID already exists.

815 The UXP ID was not found.

816 The data item was not found.

817 The user must have a valid UXP ID.

818 The specified event filter is invalid.

819 The specified user filter is invalid.

820 The specified subscriber filter is invalid.

	1. Overview
	1.1. Delegate Service
	1.2. Event Service
	1.3. Identity Service

	2. Design and Data Flow
	2.1. Delegate Design Summary
	2.2. The process flow
	2.3. Offline delegate resolution
	2.4. How to Use a Delegate
	2.5. Working with existing private management services
	2.6. Setting up a Service
	2.7. Using MySQL as the Data Store
	2.8. Getting Started with a Local Test Service

	3. Web Server Communications
	3.1. Web Server Request
	3.2. Web Server Response

	4. Deployment
	5. Web Functions
	5.1. ds::authenticate
	5.2. ds::closeSession
	5.3. dl::deleteDelegate
	5.4. dl::deleteDelegateAll
	5.5. ds::deleteJournal
	5.6. ds::deleteUser
	5.7. ds::deleteUserId
	5.8. event::count
	5.9. event::delete
	5.10. event::get
	5.11. dl::getDelegate
	5.12. dl::getDelegates
	5.13. ds::getJournal
	5.14. dl::getPublicDelegate
	5.15. dl::getPublicDelegates
	5.16. ds::getServer
	5.17. ds::getSystemFlags
	5.18. dl::getSubscribers
	5.19. dl::getSubscription
	5.20. dl::getSubscriptions
	5.21. ds::getUser
	5.22. ds::getUserId
	5.23. ds::getUsers
	5.24. ds::getUserIds
	5.25. id::addConfigs
	5.26. id::addUser
	5.27. id::applyRules
	5.28. id::deleteUser
	5.29. id::getRuleParameter
	5.30. id::getUser
	5.31. id::newDocument
	5.32. id::newUser
	5.33. id::publish
	5.34. id::setRuleParameter
	5.35. id::update
	5.36. id::updateUser
	5.37. dl::newDelegate
	5.38. ds::newUser
	5.39. ds::newUserId
	5.40. ds::openDatabase
	5.41. ds::openSession
	5.42. ds::publishUserId
	5.43. dl::sendDelegateID
	5.44. dl::sendDelegateIDToAddress
	5.45. ds::setServer
	5.46. ds::setSystemFlags
	5.47. dl::subscribe
	5.48. dl::unsubscribe
	5.49. dl::unsubscribeAll
	5.50. dl::updateDelegate
	5.51. dl::updateSubscription
	5.52. ds::updateUser
	5.53. ds::updateUserId
	5.54. verifyDelegateID

	6. UXL Scripting Functions
	6.1. ds::authenticate
	6.2. ds::closeDatabase
	6.3. ds::closeSession
	6.4. ds::deleteJournal
	6.5. dl::deleteDelegate
	6.6. dl::deleteDelegateAll
	6.7. ds::deleteUser
	6.8. ds::dropDatabase
	6.9. ds::getChallenges
	6.10. ds::getJournal
	6.11. ds::getAccessCode
	6.12. ds::getDatabaseParameters
	6.13. dl::getDelegate
	6.14. dl::getDelegates
	6.15. dl::getPublicDelegate
	6.16. dl::getPublictDelegates
	6.17. ds::getServer
	6.18. ds::getSystemFlags
	6.19. dl::getSubscribers
	6.20. dl::getSubscription
	6.21. dl::getSubscriptions
	6.22. ds::getUser
	6.23. ds::getUserId
	6.24. ds::getUsers
	6.25. ds::getUserIds
	6.26. ds::initDatabase
	6.27. dl::newDelegate
	6.28. ds::newUser
	6.29. ds::newUserId
	6.30. ds::openDatabase
	6.31. ds::openSession
	6.32. ds::publishUserId
	6.33. dl::sendDelegateID
	6.34. dl::sendDelegateIDToAddress
	6.35. ds::setDatabaseParameters
	6.36. ds::setResponses
	6.37. ds::setServer
	6.38. ds::setAccessCode
	6.39. ds::setSystemFlags
	6.40. dl::subscribe
	6.41. dl::unsubscribe
	6.42. dl::unsubscribeAll
	6.43. dl::updateDelegate
	6.44. dl::updateSubscription
	6.45. ds::updateUser
	6.46. ds::updateUserId
	6.47. dl::verifyDelegateID
	6.48. event::countEvents
	6.49. event::deleteEvents
	6.50. event::getEvents

	7. Error Codes

