

KCL Developer Guide
Version: V3.6.0

Copyright © 2020, Sertainty Corporation

Sertainty

 Copyright © 2020, Sertainty Corporation

2

V3.2.0.

Table of Contents

1 KCL CODE PROGRAM ... 3

1.1 KCL CODE .. 3
1.1.1 UXP ENGINE MODULE CONTROL USING KCL ... 3
1.2 REQUIRED AND RECOMMENDED USER RULES ... 4
1.3 KCL CODE WORKFLOW... 5
1.3.1 UXP OBJECT CREATION ... 5
1.3.2 OPENING AN EXISTING UXP OBJECT ... 5
1.3.3 SAMPLE NATIVE CONSTRUCTION FLOW USING KCL ... 6

2 KCL LANGUAGE EXTENSIONS ... 8

2.1 BUILT-IN STRUCTURE TYPES .. 8
2.2 BUILT-IN VARIABLES... 11
2.3 KCL CODE FUNCTIONS .. 23
2.4 EXAMPLE UXP ENGINE KCL CODE MODULE ... 35

 Copyright © 2020, Sertainty Corporation

3

V3.2.0.

1 KCL Code Program

The Sertainty UXP Technology implements the Unbreakable Exchange Protocol (UXP) to provide a

methodology and means by which one can protect and control access to private data. Unlike existing

approaches, UXP Engine embeds active technology within a protected Object to prevent unauthorized access

no matter where the document resides.

1.1 KCL Code Module

Every UXP Object contains a virtual Sertainty KCL Code program. The KCL Code is a proprietary program

that is used to control access and policies on behalf of the data owner. The KCL Code program can be

constructed two ways:

• Custom KCL

KCL is a proprietary C-like language that allows for a flexible way of constructing the KCL Code

program. It does, however, require skills in programming and can be difficult to implement. A

benefit of using custom KCL Code is that a designer can implement decisions that are unique to

the implementation.

• UXP ID

The preferred and easiest method for constructing a KCL Code program is by way of the UXP ID.

When using the UXP ID, a pre-designed KCL Code is constructed using various identity and policy

artifacts from the UXP ID. The benefit is that the user can use the power of KCL without actually

coding the KCL Code.

1.1.1 UXP Engine Module Control using KCL
Knowledge-Control-Language (KCL) are executable procedures that follow the UXP Object, no matter

where the UXP Object resides. The advantage of this approach is to apply behavior rules within the UXP

Object without having to build the knowledge into the UXP Engine.

Potential benefits of rules:

• KCL Code can access cloaked UXP ID artifacts in order to validate the client without exposing the

unprotected data to world.

• KCL Code follow the UXP Object. KCL Code can be written in such a way as to allow the UXP

Object to be offline and still be fully protected against unauthorized access.

• KCL Code add layered protection. For example, if the UXP Object represents a protected

document that is meant to read by a single client within one hour of creation, a rule can implement

the timer and issue a self-destruct mechanism.

• KCL Code can be compiled independently and can then be used to protect many UXP Objects, or

KCL Code can be unique to each UXP Object.

A KCL procedure has the following format:

 Copyright © 2020, Sertainty Corporation

4

V3.2.0.

datatype funcName(optional-argument-list)

{

procedure-specific-code;

return result;

}

A KCL rule has the following format:

datatype ruleName()

{

rule-specific-code;

return result;

}

Technically, a rule and a procedure are very similar. A procedure can accept function arguments from the

caller, where as a rule cannot. Rules and procedures support the same KCL Code features, otherwise.

KCL Code can be manually created, if it contains the required components. To effectively code a KCL

Identity and Governance, the user must fully understand basic program development concepts.

1.2 Required and Recommended User Rules
When constructing custom KCL Code for a UXP Object, the following procedures should be noted:

• Authentication::fileAccess()

This rule is called when the authorized user attempts to access a virtual file. The rule can
determine if the user can access the file at this point.

If the procedure is not defined, fine grained file access will be disabled.

• Authentication::main()

This routine is call for any authentication operation. It is responsible for interacting with the UXP
Engine to identify a valid user. It is also responsible for setting the appropriate access status
and access privileges for a valid user.

This procedure is required.

• Authentication::userSetup()

This rule is called prior to any authentication. The rule can typically define global settings for the
UXP Object.

This procedure is optional.

• Compliance::main()

This rule is only called when a UXP Object accessed via the compliance interface.

This procedure is optional.

• NewAppliance::setup()

When a UXP Object is created, the owner must supply credential via this KCL procedure.

This procedure is required.

 Copyright © 2020, Sertainty Corporation

5

V3.2.0.

• Touch::main()

This rule is only called when a UXP Object accessed via the touch interface. Touching a UXP
Object is a simple access point that executes rules that are common to all users. For example,
a touch routine would validate global device and location configurations, compliance and global
schedule violations.

This procedure is optional.

1.3 KCL Code Workflow

When a UXP Object is created or access, the user’s KCL Code routines may interact with the UXP Engine.

The following execution points interact with the KCL Code routines:

1.3.1 UXP Object Creation

To create a new UXP Object, the user must provide KCL Code before adding any documents to the UXP

Object. The KCL Code must contain required routines to be valid.

Once loaded, the UXP Engine calls the KCL Code routine NewAppliance::setup to retrieve authentication

data. The routine must define credential and challenge data for any user that will access the UXP Object

after creation time. Upon return, the routine is never called again.

1.3.2 Opening an Existing UXP Object
Prior to any activity, the UXP Object will invoke the KCL routine Authentication::userSetup. This routine

typically sets the global variable settings that define the E-mail information and UXP Object options. It is only

called once.

After the setup routine returns, the UXP Engine must now identify the current user. In a loop, the UXP Engine

will call the routine Authentication::main until either the user is granted or denied access. All other events are

considered challenges that must be met by the user prior to the continuing the loop. The user cannot access

any resource within this UXP Object until access is granted by Authentication::main.

When developing a custom authentication routine, it must be noted that the UXP Engine responds to the

Authentication::main routine by way of the setAuthentication procedure. The setAuthentication procedure

sets the current user status and privileges.

Only two status values are interesting to the UXP Engine:

• StatusAuthenticated

• StatusNotAuthenticated

All other status values are translated into StatusChallenged. When Authentication::main exits, the UXP

Engine immediately checks the status. If it is not StatusAuthenticated or StatusNotAuthenticated, it

assumes that StatusChallenged is the current state. Given that, if your Authentication::main routine does

not explicitly set the status value, the UXP Engine may loop infinitely.

 Copyright © 2020, Sertainty Corporation

6

V3.2.0.

To avoid an infinite loop, always set the status and check the SessionFailureCount variable. There should

always be an escape mechanism that sets the status to StatusNotAuthenticated when

SessionFailureCount exceeds a reasonable value.

1.3.3 Sample Native Construction Flow using KCL

Included in the SDK Examples folder are two source files that demonstrate how to create a UXP Object from

both C and C++. The following provides a step-by-step walk-through of building a UXP Object. The examples

utilize the native C-language interface. C++ interfaces are also available.

a. Validate the library license

When a UXP entity-aware application starts, it must enable the UXP Engine with a license

validation call. The call checks the current runtime license and enables subsequent calls to

library functions. Without a valid license, an application cannot call any other UXP entity

function successfully.

The call is:

 if (!uxpsys_initializeLibrary(error-buffer,

argc,
argv,
“*”,
“Sertainty”))

 {
 handle error

 }

b. Create a KCL Code set and compile the file

KCL Code can be unique to a UXP Object or it can be designed as a shareable set of

procedures for many objects. In either case, the format of the KCL Code is the same.

Uxpsys_compileKcl(errors, “mycode.kcb”, “mycode.kcl”, defines, macros, 0)

We now have a compiled KCL Code file called mycode.kcb.

Note: The defines argument is an optional list of comma-separated strings containing

keywords that trigger conditional compilation using #ifdef / #endif techniques.

The macros argument is a list of uxlVariableHandle items, where each handle is a macro

substitution candidate for the source KCL Code file.

c. Create a UXP Object

uxpFileHandle myUxp = uxpfile_newHandle(argc, argv)

In this example, we create a handle for a UXP Object called myUxp. At this point,
myUxp is not attached to usable physical UXP Object.

Uxpfile_openNewFile(myUxp, “myuxp.uxp”, “mycode.kcb”, KclFile,

ModifierReplace, 0)

 Copyright © 2020, Sertainty Corporation

7

V3.2.0.

This will physically create a new UXP Object on disk called myuxp.uxp and will replace

any existing file by that name.

d. Set optional UXP Object attributes

uxpfile_setName(myUxp,”My Data”);
uxpfile_setDescription(myUxp,”This is my data”);
uxpfile_setCompanyName(myUxp,”ABC Corp”);
uxpfile_setOwnerName(myUxp,”Greg Jones”);

In this example, we have set the common UXP Object attributes using the API.

e. Add virtual files to the UXP Object

uxpfile_addVirtualFromFile(myUxp,”MyFile1”, “mydata.dat”,

-1,-1, ModifierCompress)
uxpfile_addVirtualFromFile(myUxp,”MyFile2”, “mydata2.dat”,

-1, -1, 0)

The specified file is copied to the UXP Object. The copy operation will also protect the data
from further unauthorized access with the UXP Object.

f. Save and close the UXP Object

uxpfile_close(myUxp);

The close operation saves any remaining metadata and marks the object as valid.

g. Open the UXP Object for access

uxpfile_openFile(myUxp, “myuxp.uxp”, ShareAll)

This will open the file myuxp.uxp as a UXP Object. Immediately, the UXP Engine will

attempt to validate the environment and execute KCL Code routines to determine who is

trying to access the UXP Object.

Status = uxpfile_authenticate(myUxp)

If the KCL Code requires, the status will indicate challenges must be met. In that case, the

API grants access to the challenges to be presented to the user. Once the user has

responded to the challenges, they will be sent back to the UXP Engine for validation.

If all challenges were met, the user is granted access to the UXP Object with the privileges

defined for the matching credential.

If the user incorrectly responded, the KCL Code can decide to challenge the user with more

questions or deny access.

h. Checking for errors

For all activities, the caller can check for possible error conditions using the following routines:

uxpsys_hasError(myUxp)

 Copyright © 2020, Sertainty Corporation

8

V3.2.0.

This routine will return a 1 if an error has been detected for the prior call to the UXP Engine.

Char *bufptr = uxpfile_getErrorMessage(myUxp)

This routine will retrieve the error message from the prior call to the UXP Engine.

2 KCL Language Extensions
KCL is a special extension to the UXL language as defined in the Workflow Guide. KCL artifacts can only

be used by KCL Code within the UXP Object; and UXL extensions from the Workflow Guide can only be used

in UXL scripts outside of the UXP Object. Other than function access restrictions, the syntax and language

concepts are identical.

2.1 Built-In Structure Types

The following data types are automatically defined by the system:

Table 11 – Built-In Data Types

Type Name
Member

Name

Data

Type
Description

ChallengeType Structure Defines the credential challenge data.

Name String Name of the challenge

Prompt String User prompt

Value String Required response for the challenge.

UseDataMask Integer 0 – Not used, 1 – Used

DataType Integer Data type of the challenge

SubType Integer Sub-type of the challenge

FormatType Integer Formatting type for the challenge

presentation.

TimeLow Integer Low value for response window. A zero

disables the low boundary.

TimeHigh Integer High value for the response window. A

zero disables the high boundary.

Required Integer 0 – The challenge is not required, 1 – The

challenge is required every time a user

opens the UXP entity.

Address String E-mail address or SMS phone number for

external challenges and approvals. Ignored

by other challenge sub-types.

 Copyright © 2020, Sertainty Corporation

9

V3.2.0.

Multiple addresses or phone numbers may

be entered by separating the items with a

semi-colon character. A challenge with

multiple addresses or phone numbers

would send the same challenge or approval

information to each target listed. The

authentication process would require the

code from at least one of the target

addresses or phone numbers.

Key String Unique key for external challenges and

approvals. The key differentiates multiple

external challenges. Ignored by other

challenge sub-types.

Type Name Member Name Data Type Description

ConfigType Structure Defines a simple address configuration.

DeviceID Integer Contains a device identifier.

FilePaths String Contains zero or more valid folder paths at

which the UXP entity may reside. Multiple

paths are separated by ‘|’ characters.

LocationID Integer Contains a network location identifier.

ScheduleType Structure Defines the credential schedule data.

Sunday Integer 0 – disable access, 1 – enable access.

Monday Integer 0 – disable access, 1 – enable access.

Tuesday Integer 0 – disable access, 1 – enable access.

Wednesday Integer 0 – disable access, 1 – enable access.

Thursday Integer 0 – disable access, 1 – enable access.

Friday Integer 0 – disable access, 1 – enable access.

Saturday Integer 0 – disable access, 1 – enable access.

StartMinute Integer Indicates starting minute for access. A -1

indicates no restrictions. Valid range is 0 to

59.

StartHour Integer Indicates starting hour for access. A -1

indicates no restrictions. Valid range is 0 to

23.

StartDay Integer Indicates starting day for access. A -1

indicates no restrictions. Valid range is 1 to

number of days in month.

 Copyright © 2020, Sertainty Corporation

10

V3.2.0.

StartMonth Integer Indicates starting month for access. A -1

indicates no restrictions. Valid range is 1 to

12.

StartYear Integer Indicates starting year for access. A -1

indicates no restrictions. Value must be

greater than or equal to current year.

EndMinute Integer Indicates ending minute for access. A -1

indicates no restrictions. Valid range is 0 to

59.

EndHour Integer Indicates ending hour for access. A -1

indicates no restrictions. Valid range is 0 to

23.

EndDay Integer Indicates ending day for access. A -1

indicates no restrictions. Valid range is 1 to

number of days in month.

EndMonth Integer Indicates ending month for access. A -1

indicates no restrictions. Valid range is 1 to

12.

EndYear Integer Indicates ending year for access. A -1

indicates no restrictions. Value must be

greater than or equal to current year.

 Enabled Integer Indicates whether the schedule is enabled.

Type Name
Member

Name

Data

Type
Description

CredentialType Structure Defines a user credential.

Id Integer UXP-assigned identifier for the user.

Name String Full user name.

E-mail String E-mail address for the user.

ConfigCount Integer The number of approved configurations for

the credential.

DataMask String Used to make challenges dynamic. The

mask is constructed as a comma-separated

list of masking codes.

Schedule Schedule

Type

Access schedule for this user.

TimeLow Integer Low value for response window. A zero

disables the low boundary.

TimeHigh Integer High value for the response window. A

zero disables the high boundary.

ValidationType Integer

Privileges Integer Granted privileges upon authorized access.

Challenges List List of ChallengeType entries.

 Copyright © 2020, Sertainty Corporation

11

V3.2.0.

2.2 Built-In Variables
The following variables are automatically defined by the system:

Table 12 – Built-In Variables

Variable Name Data Type Description

AccessCopy Integer A constant containing the internal

access privilege value. The privilege

grants the ability to export and copy

virtual files.

AccessCount Integer Maintains the total number of access

since object creation.

AccessDelete Integer A constant containing the internal

access privilege value. The privilege

grants the ability to delete virtual files.

AccessNone Integer A constant containing the internal

access privilege value.

AccessOwner Integer A constant containing the internal

access privilege value. The privilege

grants the ability to control the entire

UXP Object virtual files.

AccessPrint Integer A constant containing the internal

access privilege value. The privilege

grants the ability to print virtual file

contents. Presently, not supported.

AccessRead Integer A constant containing the internal

access privilege value. The privilege

grants the ability to read virtual files.

Note: The UXP Engine requires every

user to have AccessRead privilege,

regardless of the privilege settings.

AccessReadEvent Integer A constant containing the internal

access privilege value. The privilege

grants the ability to read event data.

AccessReadSignature Integer A constant containing the internal

access privilege value. The privilege

grants the ability to read virtual

signatures.

AccessUnlimited Integer A constant containing the internal

access privilege value. The privilege

grants the ability control the entire UXP

Object.

 Copyright © 2020, Sertainty Corporation

12

V3.2.0.

Variable Name Data Type Description

AccessWrite Integer A constant containing the internal

access privilege value. The privilege

grants the ability to create and update

virtual files.

AdvancedThreatDetection Integer Flag to enable an algorithm to detect

break-in attempts using your

username. The detection is UXP

Object-independent, meaning that the

analytics occur over time and against

any UXP Object.that has a particular

username. Valid values are:

• Disable threat detection

• Enable threat detection

AlertDevice Integer A constant indicating that device

fingerprint information will be included

with all alerts.

AlertLocation Integer A constant indicating that location

fingerprint information will be included

with all alerts.

AlertOptions Integer Contains bit settings for alerts.

The possible bit values are:

• AlertDevice

• AlertLocation

AllowedMisses Integer Within a single authentication pass,

this value specifies the number of

invalid challenge responses that can

be tolerated and still permit access.

To be considered, the user must

provide a number of valid challenge

responses as specified with the

AllowedMissesThreshold.

AllowedMissesThreshold Integer Within a single authentication pass,

this value specifies the number of valid

challenge responses that must be

provided before considering the

AllowedMisses value.

Only local challenges are counted

towards the threshold. External

challenges and approvals must always

be valid.

AuthenticationStatus Integer Contains the current authentication

status. Authentication status values

are bit masks that permit multiple

concurrent status scenarios. For

 Copyright © 2020, Sertainty Corporation

13

V3.2.0.

Variable Name Data Type Description

example, a user may be at an invalid

location and violate the schedule

window at the same time. This variable

will contain the bit mask for both status

values.

The value is set when the intrinsic

function validateUser is called.

AuthorizedUserId Integer Contains the credential identifier of the

current authorized user.

CloneConfigurations Integer A constant containing the internal bit

value for including configuration,

device and location data into a cloned

UXP Object.

CloneEvent Integer A constant containing the internal bit

value for including event data into a

cloned UXP Object.

CloneSignatures Integer A constant containing the internal bit

value for including signature data into a

cloned UXP Object.

CloneStatistics Integer A constant containing the internal bit

value for including access statistics

data into a cloned UXP Object.

CloneUserData Integer A constant containing the internal bit

value for including user data into a

cloned UXP Object.

ConfigId Integer Contains the configuration signature

for the current access.

CurrentFileAction String Contains the action associated with a

virtual file access attempt.

Possible values are:

• Copy

• Delete

• Directory

• Read

• Rename

• Write

CurrentFileId Integer Contains the current UXP Object file

identifier. If the original UXP Object

was moved or copied, this value

should be different from the value

stored in UxpFileId.

CurrentUsername String Contains the current user’s

USERNAME challenge value.

CurrentVirtualFile String Contains the current virtual file name.

 Copyright © 2020, Sertainty Corporation

14

V3.2.0.

Variable Name Data Type Description

CurrentVirtualFileAccess Integer Contains the access setting for the

current user and virtual file.

Possible values are:

• AccessNone

• AccessUnlimited

DataTypeDate Integer A constant containing the internal date

data type value.

DataTypeFloat Integer A constant containing the internal float

data type value.

DataTypeInteger Integer A constant containing the internal

integer data type value.

DataTypeMultiChoice Integer A constant containing the internal

multiple-choice data type value.

DataTypeString Integer A constant containing the internal

string data type value.

DeviceCount Integer Specifies the number of approved

devices for the UXP Object.

DeviceId String Contains the device signature for the

current access.

DeviceType String Contains the current device type for

the current access.

EmailAuthentication Integer Specifies SMTP authentication.

Valid values are:

• Authentication disabled

• Authentication enabled

EmailPort Integer Specifies the SMTP port number used

to send E-mail.

EmailPwd String Specifies the require password for the

SMTP server.

EmailReplyTo String Specifies the return address for

sending E-mail.

EmailSecurity String Specifies the type of security for the

current SMTP server.

Valid values are:

• NONE

• SSL

• TLS

EmailServer String Specifies the SMTP server used to

send E-mail messages from within the

UXP Object.

EmailUser String Specifies the required username for

the SMTP server.

 Copyright © 2020, Sertainty Corporation

15

V3.2.0.

Variable Name Data Type Description

EnableDebugging Integer Enables debug logging for KCL

authentication. Should always be

disabled unless advanced debugging

is desired.

Valid values are:

• Debug disabled

• Debug enabled

error Integer Contains the value indicating error.

errorCode Integer After a procedure call, this will contain

the error code. A zero indicates no

error has occurred.

errorString String After a procedure call, this will contain

the error message. An empty string

indicates no error has occurred.

EventAccess Integer A constant containing the internal bit

value for recording an event entry for

every UXP Object access.

EventEmail Integer A constant containing the internal bit

value for recording an event entry by

sending the data to the email address

specified in EventEmailAddress. .

Event data is sent in clear form.

EventEmailAddress String Specifies the email address to use

when EventEmail option is selected.

EventExternal Integer A constant containing the internal bit

value for recording an event entry

using the external user callback.

Indicates an event entry will be

recorded by calling the applications

external event callback. The callback

function may read event data using the

structured API only if the caller knows

the event key as set by the owner.

If the callback function is invalid, the

event recorder will automatically

attempt to record the event within the

UXP Object.

EventFailure Integer A constant containing the internal bit

value for recording an event entry for

every UXP Object access failure.

EventFile Integer A constant containing the internal bit

value Indicates an event entry will be

recorded in a local file.

 Copyright © 2020, Sertainty Corporation

16

V3.2.0.

Variable Name Data Type Description

EventFileSpec must contain the file

specification.

If the EventFileSpec ends with .uxp,

then the event will be recorded in an

existing UXP as an anonymous write.

If the EventFileSpec is the word

console:, then the event will be

recorded to stdout.

EventFileSpec String Specifies the local file specification or a

trusted server URL.

Additionally, the keyword console: can

be used as the output file. Event data

will be sent to the current console

standard output device.

Example:

$(HOME)/$(UXP_FILENAME).log

would become /home/myhome/foo.log

EventFtp Integer Indicates an event entry will be

recorded at a remote FTP site (Not yet

implemented).

EventFtpURL must contain the server

URL.

EventFtpURL Integer Indicates the remote ftp server URL.

EventLicense Integer A constant containing the internal bit

value for including license information

in every event entry.

EventLocal Integer Indicates an event entry will be

recorded within the UXP Object. An

event recorded locally is protected by

the UXP. Only the owner and users

with ReadEvents privilege may read

event data.

Event data is immutable. It cannot be

changed or deleted by anyone.

EventMessages Integer A constant containing the internal bit

value for recording and event entry for

 Copyright © 2020, Sertainty Corporation

17

V3.2.0.

Variable Name Data Type Description

any external E-mail and SMS

messages that are sent.

EventOptions

Integer Contains bit settings for recording

event data.

The possible bit values are:

• EventAccess

• EventEmail

• EventExternal

• EventFailure

• EventFile

• EventLicense

• EventLocal

• EventMessages

• EventRemote

• EventSMS

EventRemote Integer Indicates an event entry will be

recorded at a remote UXP entity http

server (Not yet been implemented).

EventURL must contain the server

URL.

EventRepeats Integer Indicates an event entry will be

recorded for repeated failed

authentication attempts.

EventSecureKey String Key used to protect event data when

sent to remote or external targets. It is

recommended that the key be a set of

random characters having a length of

at least 50 characters.

This option is used in conjunction with

the EventExternal option.

Note: This key must be used when

attempting to read an external event

record. The API for event logging

contains a SetKey routine.

EventSMS Integer A constant containing the internal bit

value for recording an event entry by

sending the data to the email address

specified in EventSmsAddress. .

Event data is sent in clear form.

 Copyright © 2020, Sertainty Corporation

18

V3.2.0.

Variable Name Data Type Description

EventSmsAddress String A valid SMS phone number or address

to be used when sending event data

via SMS

EventURL String When the event option EventRemote

is set, this variable specifies either a

local file specification or a server URL

that will receive event data.

ExternalChallengeLength Integer Sets the length of a randomly

generated challenge string sent to a

user’s E-mail or phone.

False Integer Contains the value 0.

FormatTypeNatural Integer A constant containing the internal

format type value for simple challenge

phrases.

IgnoreCase Integer Challenge response sensitivity flag.

Valid values are:

• Challenge responses are

case sensitive

• Challenge responses are

case insensitive

IgnoreCharacters String Sets a set of characters that will be

ignored when comparing a user’s

answers to a challenge response. Can

be any printable character.

IsWorkflow Integer Indicates whether the UXP Object is

limited to workflow applications.

Not a workflow UXP Object

A workflow UXP Object

When set, authentication will not

prompt an external user for any

challenge responses. All required

responses must be provided prior to

calling the authentication routine.

Locale String Contains the current locale for the

current access.

LocationCount Integer Specifies the number of approved

locations for the UXP Object.

LocationId String Contains the location signature for the

current access.

MaskAmPm Integer A constant containing the internal

mask value. The mask value entered

by the user must be either AM or PM.

 Copyright © 2020, Sertainty Corporation

19

V3.2.0.

Variable Name Data Type Description

MaskDay Integer A constant containing the internal

mask value. The user must enter the

day of the month.

MaskHour12 Integer A constant containing the internal

mask value.The user must enter the

current hour in 12-hour format where

midnight to 1AM is 0 and noon to 1PM

is also 0.

MaskHour24 Integer A constant containing the internal

mask value. The user must enter the

current hour in 24-hour format where

midnight to 1AM is 0 and 11PM to

midnight is 23.

MaskLastMonth Integer A constant containing the internal

mask value. A constant containing the

internal mask value. The user must

enter the month number for last month

where January is month 1 and

December is month 12.

MaskLastYear Integer A constant containing the internal

mask value. The user must enter the

four-digit year for last year.

MaskMonth Integer A constant containing the internal

mask value. The user must enter the

current month number where January

is month 1 and December is month 12.

MaskNextMonth Integer A constant containing the internal

mask value. The user must enter the

month number for next month where

January is month 1 and December is

month 12.

MaskNextYear Integer A constant containing the internal

mask value. The user must enter the

four-digit year for next year.

MaskToday Integer A constant containing the internal

mask value. The user must enter the

day of the month.

MaskTomorrow Integer A constant containing the internal

mask value. The user must enter the

day of the month for tomorrow. If today

is the last day of the month, then

tomorrow will be the first day of the

next month.

 Copyright © 2020, Sertainty Corporation

20

V3.2.0.

Variable Name Data Type Description

MaskUserData Integer A constant containing the internal

mask value. The user must enter the

actual challenge value.

MaskYear Integer A constant containing the internal

mask value. The user must enter the

current four-digit year.

MaskYesterday Integer A constant containing the internal

mask value. The user must enter the

day of the month for yesterday. If today

is the first day of the month, then

yesterday will be the last day of last

month.

MasterKey String A string value used to validate the KCL

code with the user’s protected data. It

can be any string of printable

characters up to 40 characters in

length. The value is required.

MaximumIdleTime Integer Specifies the maximum number of

seconds that an open UXP Object can

remain idle. If non-zero, an expiration

will initiate a close operation.

Missing Integer Contains the value indicating missing

value.

Missing_str String Contains the value indicating missing

string value.

No_action Integer Contains the value indicating no action.

Not_found Integer Contains the value indicating data not

found.

PanicEmailAddress String Contains the email address to alert

when panic mode is enabled.

PanicSMSAddress String Contains the address or phone to alert

when panic mode is enabled.

PanicWord String Contains a keyword when used as a

response to a challenge. The panic

word can be used by any user and any

challenge.

Procedure_name String Contains the name of the currently

executing procedure.

ReadOnly Integer Contains either a zero or a one to

indicate the status of the current UXP

Object. A zero indicates a regular

read-write object. A one value

indicates the UXP Object is read-only.

 Copyright © 2020, Sertainty Corporation

21

V3.2.0.

Variable Name Data Type Description

SessionFailureCount Integer Number of failures for this access

attempt.

SMSPwd String Specifies the account password used to

connect to the SMS service.

SMSService String Specifies whether SMS service

provider. Supported services are:

Message Media Service

SMSUser String Specifies the account used to connect to

the SMS service.

StatusAuthorized Integer A constant that indicates the user was

granted access to the UXP Object.

StatusBitMax Integer A constant that indicates the maximum

number of status bits used by functions

returning the authentication status.

StatusChallenged Integer A constant that indicates the user was

found but requires more challenges

before access is granted.

StatusConfigFound Integer A constant containing configuration

status. This value indicates the device

and location combination were

recognized for the current user.

StatusConfigNotFound Integer A constant containing configuration

status. This value indicates neither the

device nor the location was recognized

for the current user.

StatusDeviceFound Integer A constant containing configuration

status This value indicates the device

was recognized for the current user but

not the location.

StatusDeviceLocationFound Integer A constant containing configuration

status. This value indicates the device

and the location were recognized for

the current user but not as a

combination.

StatusInvalidUsername Integer A constant that indicates the user

name was not recognized.

StatusLocationFound Integer A constant containing configuration

status. This value indicates the location

was recognized for the current user but

not the device.

StatusNotAuthorized Integer A constant that indicates the user was

denied access to the UXP Object.

StatusPanic Integer A constant that indicates the user is in

panic mode.

 Copyright © 2020, Sertainty Corporation

22

V3.2.0.

Variable Name Data Type Description

StatusScheduleViolation Integer A constant that indicates the user was

recognized, but the current date and

time violates the access schedule for

the user.

SubTypeExternalPhrase Integer A constant containing the internal

subtype value for external challenge

phrases.

SubTypeUserPhrase Integer A constant containing the internal

subtype value for user challenge

phrases.

Success Integer Contains the value indicating success.

TotalFailureCount Integer Number of consecutive failures since

the last valid access. When a valid

user successfully authenticates, this

value is reset to zero.

True Integer Contains the value 1.

UntrustedDevice Integer Deprecated

UntrustedLocation Integer Deprecated

UntrustedSystem Integer Contains a 1 if the current system data

is considered unreliable. Typically a

system is considered not trustworthy

when the current device is running a

remote desktop application that would

mislead location validation.

UntrustedTime Integer Contains a 1 if the current timestamp

data is considered unreliable.

Typically a timestamp is considered

not trustworthy when the current time

cannot be validated by a trusted

remote time-server.

UseLocalTime Integer Contains a 1 if the current environment

should use local time for the trusted

time. When set to 1, the system

assumes time is trusted even though it

may not use the trusted remote time-

server.

UxpCredential UxpCredentialType A structure containing the current

authenticated user credential.

UxpCredentialList List Contains all defined credentials for the

UXP Object. For new UXP Object

setup, this list must contain all the

credential values for the object. For

 Copyright © 2020, Sertainty Corporation

23

V3.2.0.

Variable Name Data Type Description

authentication, this list is optional, but

can be populated by the call

getCredentialList.

UxpFileId Integer Contains the UXP Object file identifier

when the UXP Object was created.

UxpUXP entity Structure A structure containing the primary

attributes of the current UXP Object.

ValidationLocal Integer A constant containing the internal

validation type value for local

credential validation.

ValidationRemote Integer A constant containing the internal

validation type value for remote

credential validation via an identity

delegate.

All event options are maintained as bit switches, so any combination of options can be set using the single

KCL variable EventOptions.

For example, to set event logging for failures using the event callback, the following setting is required within

the KCL Authentication::setup routine:

EventOptions = EventFailure | EventExternal | EventFile;

EventFileSpec = “$(UXP_FILENAME).log”;

2.3 KCL Code Functions
In addition to intrinsic functions described in the Workflow Guide, the following procedures are specific to UXP

Object operations and can only be used in KCL Code authentication and access modules.

Table – 13 UXP Engine Functions

Procedure Description

addCommonConfiguration
Adds the specified configuration to the list of acceptable

configurations for all users

addConfiguration
Adds the current configuration to the list of acceptable

configurations for the current user.

addChallenge

Adds the specified challenge name as a challenge for the current

user. The user is then prompted for the correct response to the

challenge.

addRandomChallenge
Adds a random challenge for the current user. The user is then

prompted for the correct response to the challenge.

defineChallenge
Defines the specified challenge for a credential. The challenge

structure must contain the base challenge data.

 Copyright © 2020, Sertainty Corporation

24

V3.2.0.

Procedure Description

defineConfiguration
Defines the specified default configuration for a credential. The

configuration structure must contain the base configuration data.

defineCredential

Defines the specified credential for an object. The credential

structure must contain the base credential data and the schedule

data.

destroy Destroys the internal data for the UXP Object.

downloadUpdates
Downloads authorized updates the UXP Object from a known

Sertainty server.

getChallengeCount
Gets the number of challenges that have been selected for

presentation to the user.

getComplianceDate Gets the compliance date/time for the UXP.

getCreationDate Gets the UXP creation date/time.

getCredentialList
Gets the current list of credentials and places data in the built-in

variable UxpCredentialList.

getFileFlags Retrieves the ACL flags for a virtual file.

hasConfiguration
Determines if the current authentication process has any defined

configurations.

isCommonConfiguration
Determines if the current configuration is a certified common

configuration.

isOwner Determines if current user is the owner of the UXP Object.

isScheduleViolation
Determines if the current object access is valid with respect to the

specified schedule.

readVariable Reads the variable from within the UXP Object.

recordEvent
Records a custom event with the UXP Object. The event will be

delivered based on the event settings within the UXP Object.

sendEmail Sends an E-mail.

sendFtp
Sends a copy of the current UXP entity to the specified FTP

server.

sendSMS Sends an SMS text message.

setAuthorization
Sets the authorization for access to the protected data for the

current user.

setReality Sets the current reality.

signUxp Signs the current UXP Object.

uploadEvent
Uploads the event history for the UXP Object to a known

Sertainty server.

uxpVariable Gets the specified external UXP Object variable value

uxpVariableExists Determines if the specified external UXP Object variable exists.

 Copyright © 2020, Sertainty Corporation

25

V3.2.0.

Procedure Description

validateUser
Evaluates the current user based on user-supplied challenge

responses.

virtualFileExists Determines if the virtual file exists in the current UXP Object.

writeVariable Saves the value as a persistent variable within the UXP Object.

addCommonConfiguration (config)

Adds the specified configuration to the list of acceptable configurations for all users. This simplifies

configuration management by setting a set of fixed configurations for all users.

Parameters:

config

A UxpConfig structure containing the desired configuration identifier, device

identifier and location identifier. If omitted, the current configuration is

added.

addConfiguration ()

Adds the current configuration to the list of acceptable configurations for the current user.

Parameters:

None

addChallenge (name)

Adds the specified challenge name as a challenge for the current user. The user is then prompted for

the correct response to the challenge.

Parameters:

name The name of the challenge as defined for this user.

addRandomChallenge (count)

Adds a random challenge for the current user. The user is then prompted for the correct response to

the challenge.

Parameters:

count Specifies the number of challenges to add.

defineChallenge (credential, challenge)

Defines the specified challenge for a credential. The challenge structure must contain the base

challenge data.

 Copyright © 2020, Sertainty Corporation

26

V3.2.0.

Parameters:

credential
The name of the UxpCredentialType structure containing

credential data.

Challenge
The name of the UxpChallengeType structure containing

challenge data.

defineConfiguration (credential, config)

Defines the specified default configuration for a credential. The configuration structure must contain the

base configuration data.

A default configuration permits the owner of the object to defined known device and locations for a

user. Typically, when a user attempts to open a UXP Object on a new device or at a new location, the

system will challenge the user to verify identity. By pre-defining configurations, a user already appears

to be “known” to the UXP Object.

Parameters:

credential
The name of the UxpCredentialType structure containing

credential data.

Config
The name of the UxpConfigType structure containing

configuration data.

defineCredential (credential)

Defines the specified credential for a UXP Object. The credential structure must contain the base

credential data and the schedule data. Challenges and default configurations can also be included or

added at a later time.

Parameters:

credential
The name of the UxpCredentialType structure containing

credential data.

Destroy ()

Destroys the internal data for the UXP Object. This is irreversible.

downloadUpdates ()

Downloads authorized updates the UXP Object from a known Sertainty server. (Not presently

implemented)

int getChallengeCount ()

Gets the number of challenges that have been selected for presentation to the user.

Returns:

 Copyright © 2020, Sertainty Corporation

27

V3.2.0.

Number of challenges currently selected for the user.

date getComplianceDate (def-date)

Gets the compliance date and time for the UXP Object. A date can come from two places: the base

Identity when the UXP Object was created. This is the legacy value. The second comes from UXP

Object-based compliance data. If the compliance data is not present or is not set, then the default date

is returned. If the compliance settings contain an expiration date/time, then that value is returned.

Parameters:

def-date
The default compliance date/time as defined in the original UXP

identity.

Returns:

Compliance date and time.

date getCreationDate ()

Gets the date and time when the UXP Object was created.

Parameters:

None

Returns:

Creation date and time.

getCredentialList ()

Gets the current list of credentials and places data in the built-in variable UxpCredentialList.

Int getFileFlags (virtual-file)

Retrieves the ACL flags for a virtual file. File flags are a bitmask with the following values:

2 File is Read-only

4 File is Read-write

32 Send SMS message on access

64 Send email message on access

256 No access

8192 No movement

32768 Requires UXP Object signature

 Copyright © 2020, Sertainty Corporation

28

V3.2.0.

Parameters:

virtual-file Virtual file path to test.

Returns:

ACL file flags.

Int hasConfiguration (is-global , option)

Determines if the current authentication process has any defined configurations.

Parameters:

is-global
True if testing global configuration list. False if testing the current

user’s configuration list.

Option

Determine what portion of the configuration is tested. Possible

values are:

1 - Entire configuration
2 - Device only
3 - Location only

Returns:

1 if there are existing configurations. 0 if there are no existing configurations.

Int isCommonConfiguration ()

Determines if the current configuration is a certified common configuration.

Parameters:

None

Returns:

1 if current configuration is certified. 0 if the current configuration has not be

certified by the UXP Object.

Int isOwner ()

Determines if current user is the owner of the UXP Object.

Returns:

1 if the user is the owner. 0 if the user is not the owner.

Int isScheduleViolation (sched)

 Copyright © 2020, Sertainty Corporation

29

V3.2.0.

Determines if the current object access is valid with respect to the specified schedule.

Parameters:

sched ScheduleType structure containing a schedule definition.

Returns:

1 if schedule has been violated. 0 if access is permitted.

readVariable (name , variable)

Reads the variable from within the UXP Object. If the variable is not found, an empty string is returned.

A persistent variable can be used to dynamically save data from within the KCL Code routine.

Parameters:

name Name of the persistent variable.

Variable The variable to receive the persistent data.

recordEvent (action, status, msg [, variables])

Records a custom event with the UXP Object. The event will be delivered based on the event settings

within the UXP Object.

Parameters:

action
Action value for the event. Possible values range from 22 to

50. Values 0 to 21 are reserved for use by the UXP engine.

status Any status value as defined by the user. Typically, the status

values are UXP entity error codes.

msg A string to be recorded within the event.

variables A list of optional variables that will be added to existing event
variables. A variable has a name and a value. The list is a
value-pairs string, separated by a '|' character.

Example: MobileDevice=iPhone|IPhone Version=V4.5.6

sendEmail (to , subject , body [, secure , incUxp , options , attName])

Sends an E-mail.

Parameters:

to The address of the E-mail recipient.

Subject The subject of the E-mail.

Body The body of the E-mail.

 Copyright © 2020, Sertainty Corporation

30

V3.2.0.

Secure A Boolean flag indicating the E-mail should be sent as a UXP

Object attachment. The attached UXP Object will contain the

Identity as the current UXP Object. The body of the E-mail will

be a document called E-mail within the UXP Object. If the

incUxp flag is set, the attachment will also contain the UXP

Object copy.

The flag is optional. The default value is False.

incUxp A Boolean flag indicating the E-mail should include a UXP Object

copy of the current UXP Object. The options parameter controls

what elements of the current UXP Object will be included.

The flag is optional. The default value is False.

Options The options that control what data is included in the UXP Object

copy. Using the following built-in variables, the user can

combine the values into a single integer:

CloneEvent

Copies all event entries to the new object.

CloneConfigurations

Copies all configuration, device and location data to the

new object.

CloneSignatures

Copies all signature data to the new object.

CloneStatistics

Copies the access statistics to the new object.

CloneUserData

Copies all user data to the new object. Note, copying

user data may increase the size of the new object and

subsequently prevent successful delivery.

The parameter is optional. The default value is 0.

attName
The name to be given the attachment, if either the secure or

incUxp flags are set.

sendFtp (output-name , server , user , password , port , options)

Sends a copy of the current UXP Object to the specified FTP server.

Note: this is currently disabled due to technical restrictions.

Parameters:

 Copyright © 2020, Sertainty Corporation

31

V3.2.0.

output-name The output file name to which the object will be saved.

Server The FTP server IP address.

User The username as required for authentication at the FTP server.

Password The password as required for authentication at the FTP server.

Port The port to use for connecting to the specified FTP server.

Options The options that control what data will be included in the UXP

Object copy. Using the following built-in variables, the user can

combine the values into a single integer:

CloneEvent

Copies all event entries to the new object.

CloneConfigurations

Copies all configuration, device and location data to the

new object.

CloneSignatures

Copies all signature data to the new object.

CloneStatistics

Copies the access statistics to the new object.

CloneUserData

Copies all user data to the UXP Object.

Note: copying user data may increase the size of the new

object and subsequently prevent successful delivery.

sendSMS (to , message [, incConfig])

Sends an SMS text message. The message will include a minimal amount of UXP device and location

data.

Parameters:

to The phone number of the recipient.

Message Message to send

incConfig
Optional Boolean to indicate the desire to include minimal

configuration data in the message. The default is False.

setAuthorization (status , priv)

Sets the authorization for access to the protected data for the current user.

 Copyright © 2020, Sertainty Corporation

32

V3.2.0.

Parameters:

status The status of the access.

Possible values are:

0 - NotAuthorized
1 - Authorized
2 - Challenged

priv The privileges granted to the user, if authorized.

Possible bit values are:

• AccessAltRealities

• AccessCopy

• AccessDelete

• AccessNone

• AccessOwner

• AccessPrint

• AccessRead

• AccessReadEvent

• AccessReadSignature

• AccessSign

• AccessUnlimited

• AccessWrite

setReality (name)

Sets the current reality within the UXP Object.

Parameters:

name Name of the reality.

Note: only available with AltReality privileges.

signUxp (key , data)

Signs the current UXP Object with a permanent timestamp, configuration and user-specified data. A

UXP Object can be signed any number of times by the current authorized user.

Parameters:

key
Optional key information that can tie the signature to a particular

event.

Data
Optional data that can be stored in the signature. The data can

be anything the owner requires.

uploadEvents ()

Uploads the event history for the UXP Object to a known Sertainty server. (Not presently implemented)

 Copyright © 2020, Sertainty Corporation

33

V3.2.0.

string uxpVariable (expr)

Gets the specified external UXP variable value.

Parameters:

name Variable to find. The variable name must be quoted.

Returns:

The variable value as a string.

Int uxpVariableExists (expr)

Determines if the specified external UXP Object variable exists.

Parameters:

name Variable to find. The variable name must be quoted.

Returns:

1 if variable exists. 0 if variable does not exist.

Int validateUser()

Evaluates the current user based on user-supplied challenge responses. The returned status is actually

a bit mask that can indicate multiple status values concurrently. For example, a user may be violating a

schedule and have an unrecognized configuration. In this example, the return status value would be

both StatusConfigNotFound and StatusScheduleViolation.

In some cases, a status may only contain a single status bit set.

Parameters:

None

Returns:

The following status values can be returned by this call:

StatusConfigNotFound

Indicates neither the device nor the location was

recognized for this user.

StatusDeviceFound

Indicates the device was recognized for this user, but the

location was not.

 Copyright © 2020, Sertainty Corporation

34

V3.2.0.

StatusDeviceLocationFound

Indicates the device and the location were recognized for

this user, however, not as combination.

StatusInvalidUsername

Indicates the user name as not valid.

StatusLdapViolation

Indicates a remove LDAP directory services lookup failed.

StatusLocationFound

Indicates the location was recognized for this user, but the

device was not.

StatusPanic

Indicates the user is in panic mode. The KCL can then

decide what to do. Typically, the code should send an alert

to an alternate contact, who can then call an appropriate

authority.

StatusScheduleViolation

Indicates the current time does not occur within the

specified schedule for this user.

Int virtualFileExists (name)

Determines if the virtual file exists in the current UXP Object.

Parameters:

name Virtual file name to find.

Returns:

1 if virtual file exists. 0 if virtual file does not exist.

writeVariable (name , value)

Saves the value as a persistent variable within the UXP Object. The variable can be read at the next

authentication point. A persistent variable can be used to dynamically save data from within the KCL

Code routine.

Parameters:

name Name of the persistent variable.

Value
The data to save in the UXP Object. The maximum size is 500

bytes.

 Copyright © 2020, Sertainty Corporation

35

V3.2.0.

2.4 Example UXP Engine KCL Code Module
The following is a simple example of a complete UXP Engine module:

/*! \copyright Sertainty Corporation, 2016. All Rights Reserved.

 \file sample.kcl

 \details Sample kcl code source

 \author gsmith

 \date 1/01/2012

 */

/**

 * Called by UXP Object when the user wishes to initialize Object structures

 * from fixed settings within this file.

 */

rule NewAppliance::setup()

{

 depends on rule commonSetup(success);

 CredentialType cred;

 ChallengeType ch;

 ConfigType config;

#ifdef TEST

 config.ConfigId = ConfigId;

 config.DeviceId = DeviceId;

 config.LocationId = LocationId;

 addCommonConfiguration(config);

#endif

 /* Define the base credential */

 cred.Name = "Jon Smith";

 cred.TimeLow = 0;

 cred.TimeHigh = 300;

 cred.ValidationType = ValidationLocal;

 cred.Privileges = AccessOwner;

 cred.Email = "your@emailsys.com";

 cred.Schedule.Sunday = cred.Schedule.Saturday = true;

 cred.Schedule.Monday = cred.Schedule.Tuesday = cred.Schedule.Wednesday = true;

 cred.Schedule.Thursday = cred.Schedule.Friday = true;

 cred.Schedule.StartHour = 8;

 cred.Schedule.EndHour = 23;

 cred.Schedule.StartMinute = cred.Schedule.EndMinute = -1;

 cred.Schedule.StartDay = cred.Schedule.EndDay = -1;

 cred.Schedule.StartMonth = cred.Schedule.EndMonth = -1;

 cred.Schedule.StartYear = cred.Schedule.EndYear = -1;

 defineCredential(cred);

 /* Add challenges */

 ch.Name = "USERNAME";

 ch.Prompt = "User";

 ch.Value = "Test";

 ch.TimeLow = 0;

 ch.TimeHigh = 10;

 Copyright © 2020, Sertainty Corporation

36

V3.2.0.

 ch.DataType = DataTypeString;

 ch.SubType = SubTypeUserPhrase;

 ch.FormatType = FormatTypeNatural;

 ch.Required = true;

 defineChallenge(cred, ch);

 ch.Name = "TEST1";

 ch.Prompt = "Test 1";

 ch.Value = "test1";

 defineChallenge(cred, ch);

 ch.Name = "TEST2";

 ch.Prompt = "Test 2";

 ch.Value = "test2";

 defineChallenge(cred, ch);

 ch.Name = "TEST3";

 ch.Prompt = "Test 3";

 ch.Value = "test3";

 ch.Required = false;

 defineChallenge(cred, ch);

 ch.Name = "EMAILCHALLENGE";

 ch.Prompt = "Enter the code sent to email address (Test)";

 ch.Value = "";

 ch.Address = "your@emailsys.com";

 ch.Key = "TEST";

 ch.TimeLow = 0;

 ch.TimeHigh = 0;

 ch.SubType = SubTypeExternalEmail;

 defineChallenge(cred, ch);

 ch.Name = "EMAILAPPROVAL";

 ch.Prompt = "Enter the phrase sent to approver TEST";

 ch.Value = "";

 ch.Address = "your@emailsys.com";

 ch.Key = "TEST";

 ch.TimeLow = 0;

 ch.TimeHigh = 0;

 ch.SubType = SubTypeExternalEmailApproval;

 defineChallenge(cred, ch);

 ch.Name = "SMSCHALLENGE";

 ch.Prompt = "Enter the code sent to your phone (TEST)";

 ch.Value = "";

 ch.Address = "000000000";

 ch.Key = "TEST";

 ch.SubType = SubTypeExternalSMS;

 defineChallenge(cred, ch);

 ch.Name = "SMSAPPROVAL";

 ch.Prompt = "Enter the phrase sent to approver TEST";

 ch.Value = "";

 ch.Address = "000000000";

 ch.Key = "TEST";

 ch.SubType = SubTypeExternalSMSApproval;

 defineChallenge(cred, ch);

 Copyright © 2020, Sertainty Corporation

37

V3.2.0.

}

/**

 * Called prior to actual user authentication. This gives the

 * owner a chance to setup global elements.

 */

rule Authentication::setup()

{

 depends on rule commonSetup(success);

}

/**

 * This routine is called whenever a user is tested for authenticity. This

 * routine will continue to be called until the following occurs:

 *

 * o StatusAuthorized is the authorization status. The current user is

 * now authorized to access the UXP and its data base on the

 * designated privileges

 *

 * o StatusNotAuthorized is the authorization status. The current user

 * is denied access and the UXP engine exits.

 *

 * All other authorization status values are interpreted as challenges to

 * the current user to prove identity.

 *

 * Prior to returning, the routine should call the setAuthorization

 * routine to indicate authentication status and assigned privileges.

 */

rule Authentication::main()

{

 /* These rules execute one time */

 depends on rule Authentication::checkReadOnly(Success);

 depends on rule Authentication::complianceCheck(Success);

 depends on rule Authentication::scheduleCheck(Success);

 depends on rule Authentication::locationCheck(Success);

 /* These rules execute upon entry and return */

 on entry Authentication::checkFailures();

 on return Authentication::checkFailures();

 /* Find the user credential. If found, UxpCredential is set.

 *

 * The return status will contain one or more status bits set. For

 * that reason, we must loop through the bits to determine which

 * status conditions must be addressed for the next authentication pass.

 */

 int i, status = validateUser();

 for (i = 1; i <= StatusBitMax; i++)

 {

 switch (bitTest(status, i))

 {

 case 0:

 break;

 case StatusAuthorized:

 addConfiguration();

 setAuthorization(StatusAuthorized, UxpCredential.Privileges);

 return;

 /* Invalid username entered */

 Copyright © 2020, Sertainty Corporation

38

V3.2.0.

 case StatusInvalidUsername:

 return;

 /* Schedule violation */

 case StatusScheduleViolation:

 logFailure("UXP entity access attempted outside of valid time window for this user");

 return;

 /* Neither the device nor the location was recognized */

 case StatusConfigNotFound:

 addRandomChallenge(3);

 break;

 /* Device was recognized, but the location was not */

 case StatusDeviceFound:

 addRandomChallenge(2);

 break;

 /* Location recognized, device was not */

 case StatusLocationFound:

 addRandomChallenge(3);

 break;

 /* Device and location recognized, but not at the same time. */

 case StatusDeviceLocationFound:

 addRandomChallenge(1);

 break;

 }

 }

 /* Check for trusted elements */

#ifdef UNTRUSTED

 if (!TrustedDevice || !TrustedLocation || !TrustedTime || !TrustedSystem)

 addChallenge("SMSCHALLENGE");

#endif

 /* Add challenges equal to the current session failure count */

 addRandomChallenge(SessionFailureCount);

 /* Example: If object has been moved, add challenges */

#ifdef ENFORCE_CIPHER_LOCATION

 if (UxpFileId != CurrentFileId)

 {

 addRandomChallenge(3);

 }

#endif

 /* Requires approval by 2nd person */

#ifdef ADD_EXTERNAL_CHALLENGES

 addChallenge("EMAILAPPROVAL");

#endif

 /* Assume more challenges */

 setAuthorization(StatusChallenged, AccessNone);

 Copyright © 2020, Sertainty Corporation

39

V3.2.0.

 return;

}

/**

 * Checks session and total failure counts

 */

rule Authentication::checkFailures()

{

 if (TotalFailureCount >= 10)

 {

 logFailure("UXP entity shredded and destroyed due to attack");

 destroy();

 return (error);

 }

 if (SessionFailureCount >= 2)

 {

 logFailure("UXP entity access rejected due to excessive failures");

 return (error);

 }

 return (noaction);

}

/**

 * Rule to check compliance independent of the user

 */

rule Authentication::complianceCheck()

{

 depends on rule Compliance::main(success);

 if (today() > ComplianceExpirationDate)

 {

 logFailure(concat("UXP entity has expired as of ",

 ComplianceExpirationDate," and will be shredded."));

 destroy();

 return (error);

 }

 return (success);

}

/**

 * Rule to check if uxp is read-only

 */

rule Authentication::checkReadOnly()

{

 if (ReadOnly)

 {

 logFailure("UXP entity is read-only and cannot be opened.");

 return (error);

 }

 return (success);

}

/**

 * Rule to check a schedule independent of the user

 */

rule Authentication::scheduleCheck()

{

 Copyright © 2020, Sertainty Corporation

40

V3.2.0.

 ScheduleType sched;

 sched.Sunday = sched.Saturday = true;

 sched.Monday = sched.Tuesday = sched.Wednesday = true;

 sched.Thursday = sched.Friday = true;

 sched.StartHour = sched.EndHour = -1;

 sched.StartMinute = sched.EndMinute = -1;

 sched.StartDay = sched.EndDay = -1;

 sched.StartMonth = sched.EndMonth = -1;

 sched.StartYear = sched.EndYear = -1;

 if (isScheduleViolation(sched))

 {

 logFailure("UXP entity access attempted outside of valid time window");

 return (error);

 }

 return (success);

}

/**

 * Rule to check device/location independent of the user

 */

rule Authentication::locationCheck()

{

#ifdef ENFORCE_CIPHER_LOCATION

 if (UxpFileId != CurrentFileId)

 {

 logFailure("UXP entity has been illegally moved");

 return (error);

 }

#endif

#ifdef TEST

 if (!isCommonConfiguration())

 {

 logFailure("Invalid common configuration");

 return (error);

 }

#endif

 return (success);

}

/**

 * This rule is used to check compliance for the object

 *

 */

rule Compliance::main()

{

 ComplianceExpirationDate = toDate("01/10/2099 00:00");

 return (success);

}

/**

 * This routine is called whenever a virtual file is access.

 */

rule Authentication::fileAccess()

{

 if (CurrentFileAction != "Directory")

 Copyright © 2020, Sertainty Corporation

41

V3.2.0.

 {

 string buf = concat("Virtual file '", CurrentVirtualFile, "' accessed for ",

 CurrentFileAction, ": ", toString(today()), " (UTC)");

 sendEmail("your@emailsys.com", "Alert: UXP entity virtual file accessed", buf);

 }

 CurrentVirtualFileAccess = AccessUnlimited;

 return;

}

/**

 * A common routine to setup global elements.

 */

rule commonSetup()

{

 MasterKey = "a set of random characters";

 MaximumIdleTime = 300;

 ExternalChallengeLength = 7;

 IgnoreCase = true;

 EventOptions = EventFailure | EventLocal | EventAccess | EventExternal | EventMessages;

 AlertOptions = AlertLocation | AlertDevice;

 EmailReplyTo = "Your reply-to";

 EmailServer = "your smtp server address";

 EmailPort = 587;

 EmailSecurity = "TLS";

 EmailAuthentication = true;

 EmailSenderName = "Your Service";

 EmailUser = "your email account";

 EmailPwd = "your password";

 EventSecureKey = "a set of random characters";

 return (success);

}

/**

 * Logs a failure and sends email

 */

procedure logFailure(message)

{

 string buf = concat(message, ": ", toString(today()), " (UTC)");

 sendEmail("your@emailsys.com", "Alert: UXP entity access failure", buf);

 setAuthorization(StatusNotAuthorized, AccessNone, message);

}

	1 KCL Code Program
	1.1 KCL Code Module
	1.1.1 UXP Engine Module Control using KCL
	1.2 Required and Recommended User Rules
	1.3 KCL Code Workflow
	1.3.1 UXP Object Creation
	1.3.2 Opening an Existing UXP Object

	1.3.3 Sample Native Construction Flow using KCL

	2 KCL Language Extensions
	2.1 Built-In Structure Types
	2.2 Built-In Variables
	2.3 KCL Code Functions
	2.4 Example UXP Engine KCL Code Module

